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I. INTRODUCTION

As Reinforcement Learning (RL) methods become more suc-
cessful in training agents to solve human-relevant tasks, they
become more common in real world applications. However,
in a multi-agent setting, it is challenging to train the agents
in a decentralized way to learn prosocial behaviours. Deep-
Q-Networks (DQNs) and policy gradient methods such as
REINFORCE have proven successful in single agent RL
[1]–[3]. Unfortunately these methods do not succeed when ap-
plied naively to Multi-Agent Reinforcement Learning (MARL)
problems [4]. The introduction of a non-stationary environ-
ment caused by multiple agents simultaneously changing their
policies breaks the Markov assumption required for conver-
gence of Q-learning, and exacerbates the problem of high
variance gradient estimates in policy gradient methods. To
address this, Lowe et al. extend policy gradient methods by
introducing a centralized critic as well as policy ensembles,
allowing multiple learning agents to cooperate and compete in
partially observable Markov games [5]. We first try to extend
these methods in a game-theoretic paradigm, directly applying
them to the Iterated Game of Chicken.

Dare Chicken
Dare 0, 0 7, 2

Chicken 2, 7 6, 6

TABLE I: Payoff table for the Game of Chicken. The first and second
numbers are the rewards for the row and column players, respectively.

Table I shows the payoff matrix for the well-known Game
of Chicken. In Iterated Game of Chicken (IGC), each turn the
row and column players simultaneously select their actions
and receive rewards accordingly. This game is played out
for multiple turns, with each agent wishing to maximize its
reward summed over the turns. One solution concept is the
Pure Nash Equilibrium (PNE), in which each agent has no
incentive to deviate from a deterministic strategy, given the
strategy of their opponent. In this game the two PNE are
(Chicken, Dare) and (Dare, Chicken). Although this is a good
predictor of rational behaviour, there exists a more general
notion of equilibrium that still maintains rationality and allows
for better social outcomes: Correlated Equilibrium (CE). A CE
strategy is any randomized assignment of potentially correlated
action recommendations that no party wants to deviate from
[6]. If one player chooses to follow the recommendation, the
other player’s best response would be to follow their respective
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recommendation as well. A game can have more than one CE,
and PNE are a subset of CE.

In the IGC setting, we consider an oracle which at each turn
sends each agent a signal that encodes the recommendation.
Each agent only observes their own signal, but the oracle
correlates the two revealed signals each turn. One example of
CE in this game is when the oracle draws one of three pairs
of numbers and gives them to the agents - (0, 0), (0, 1), and
(1, 0) with probabilities 0.5, 0.25 and 0.25, respectively. Note
that this alone is not a CE unless the agents associate these
signals accordingly, choosing to Chicken when receiving a 0,
and to Dare when receiving a 1. This strategy constitutes a CE
since neither party would benefit from deviating if the other
party chose to follow the signal. Unlike the PNE mentioned
earlier, this CE strategy is prosocial as it achieves a larger
expected sum of rewards when considering both agents.

We observe that vanilla DQNs, REINFORCE, and
MADPPG fail to reach CE in the IGC setting, converging to
PNE instead. Although these methods were not designed with
this goal in mind, other works considering a similar setting
have significant drawbacks. Borowski et al. provide a method
to provably reach CE in repeated matrix games, but it does
not generalize beyond that setting [7]. Greenwald et al. design
learning algorithms to reach correlated equilibrium in general
stochastic games, however their method requires agents to
either directly share their Q-values with one another, or have a
rich enough observation to be able to estimate each others’ Q-
values [8]. In our work, we seek to drop this interdependence
and instead reach CE by coordinating when agents explore.

Our main contributions in this paper are two-fold:
• We propose Synchronized ε-Greedy Exploration, which

builds on the commonly-used ε-greedy exploration, and
therefore can be generalized to stochastic games and used
in any off-policy learning algorithm.

• We test our method on two different games: IGC and
Grandmas’ Cookies. Our method is the only one that
successfully reaches CE in IGC. None of the methods reach
CE in Grandmas’ Cookies, but we hope that discussing the
difficulty of this problem and outlining possible solutions
will spur further research into this interesting field.

II. METHODS

We present brief descriptions of methods that we hypothesized
could reach CE, but failed in our experiments. We then present
our most successful proposed approach, which supplements
DQN with a synchronized exploration strategy. A modified



exploration strategy is desirable as it allows agents to retain
self-interest in the long run and can be applied to other
algorithms that allow off-policy learning.
REINFORCE. We adapt REINFORCE to the multi-agent
setting. In contrast to DQN, REINFORCE and policy gradient
methods directly optimize the policy, which can be helpful
when it is particularly difficult to estimate the Q-function [2].
MADDPG. Lowe et al. propose this as a multi-agent adapta-
tion of actor-critic policy gradient methods that considers the
policies of other agents [5]. They show its efficacy in mixed
cooperative-competitive environments.
Learning with Opponent-Learning Awareness (LOLA). Fo-
erster et al. have shown success with LOLA on matrix games
such as Iterated Prisoner’s Dilemma [9]. LOLA accounts for
the impact of one agent’s policy on the anticipated parameter
update of the other agents.
Deep-Q-Network (DQN). Due to difficulties reaching CE
using policy gradient approaches, we propose extensions of
the DQN. Since much of the difficulty of reaching correlated
equilibria in a multi-agent setting is that agents have to explore
a certain combination of actions together, we experiment with
the following proposed exploration strategies during training.
Independent ε-Greedy Exploration: Each agent independently
follows an ε-greedy strategy: With probability 1− ε, the agent
follow its policy, and with probability ε, the agent selects an
action randomly with uniform probability.
Synchronized ε-Greedy Exploration: With probability 1−ε, all
agents follow their policies, and with probability ε, all agents
select actions randomly with uniform probability.

III. EXPERIMENTS

We perform experiments on two environments of increasing
complexity: IGC and Grandmas’ Cookies. With our proposed
exploration method, we reach the desired CE in the simpler
IGC environment. However, our method fails to reach CE in
the more complex Grandmas’ Cookies environment.
A. Iterated Game of Chicken (IGC)

Fig. 1: Results from our proposed method and previous methods on
IGC. The x-axis is scaled to normalize for convergence time. The two
dashed lines correspond to average rewards for the PNE and CE.

Figure 1 shows the results. MADPPG, REINFORCE, and
Independent ε-Greedy DQN all converge to a PNE in IGC and
fail to converge to the desired CE. Although LOLA reaches
higher average reward than all other algorithms, it does not
converge to any Nash Equilibrium, violating the basic precept
of myopic self-interest. Because of this, we exclude it from
comparison of methods achieving game-theoretic equilibria,

which we consider as good predictors of rational behavior.
With Synchronized ε-Greedy Exploration, we are able to reach
CE with the DQN. By synchronizing the agents’ exploration,
we increase the probability of the agents simultaneously
performing the actions required for CE.
B. Grandmas’ Cookies
We develop a new game, Grandmas’ Cookies, that extends
IGC to be a stochastic game with a larger state-action space,
and temporally separating actions and their rewards. We ex-
plain a 2-agent version of this game, as difficulties in this
setting prevented our consideration of more players.

Grandma’s house and two kids are spawned randomly on
a grid. Grandma’s house is a part of the environment, while
the kids are trainable agents. Each kid can move freely in the
four cardinal directions throughout the grid, and both kids and
Grandma’s house can occupy the same tile. In addition, each
kid can also choose to eat cookies at Grandma’s house or do
nothing, giving them a total of 6 actions each. When they are
both in the same location as Grandma’s house, their rewards
are as follows: (1,−4) if one eats cookies while the other does
nothing respectively, (1, 1) if they both eat cookies, and (0, 0)
otherwise. To make this game an extension of IGC, when both
kids eat simultaneously, Grandma’s house spawns in a random
unoccupied location. If a kid is outside of Grandma’s house,
the kid receives a reward of −9 associated with being bored.
This ensures that kids should prefer to be in the house even
if they are not eating. There is an additional movement tax
of 0.9378 subtracted as well. Finally we provide both agents
with a correlated signal that is distributed identically to the
one in IGC. This makes the CE for this game under the grid
size of 3× 3 identical to that of IGC, where chickening out is
analogous to doing nothing, and daring is analogous to eating.

Each agent receives the full information about the state of
the world, but only the correlated signal corresponding to their
recommendation. The agents then choose one of 6 actions,
where eating cookies is regarded the same as doing nothing
when the agent is outside of Grandma’s house.
Results on Grandmas’ Cookies: The algorithms fail to reach
CE in the Grandmas’ Cookies environment, which would be
achieved if agents chose to eat cookies or do nothing based
on the recommendation from the oracle’s signal. Although
providing a correlated signal to the agents introduces a CE
strategy profile, there is no direct incentive for agents to corre-
late their actions with this signal. Even with our synchronized
exploration approach, we find agents are indifferent to the
signal, i.e. the signal does not influence action Q-values.

IV. FUTURE DIRECTIONS

We have proposed exploration algorithms that succeed in
reaching CE in repeated matrix games but do not yet succeed
in more general stochastic games. There are a number of
promising directions in this regard. Specifically, we consider
a variety of ways to explicitly condition the exploration
strategies on the signal, as well as combining the exploration
strategy with proximal policy methods [10]. We hope that
these directions will enable more prosocial MARL agents.
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