
Active Preference-Based Gaussian Process
Regression for Reward Learning

Erdem Bıyık∗
Electrical Engineering

Stanford University
ebiyik@stanford.edu

Nicolas Huynh∗
Applied Mathematics
École Polytechnique

nicolas.huynh@polytechnique.edu

Mykel J. Kochenderfer
Aeronautics & Astronautics

Stanford University
mykel@stanford.edu

Dorsa Sadigh
Computer Science

Stanford University
dorsa@cs.stanford.edu

Abstract— Designing reward functions is a challenging prob-
lem in AI and robotics. Humans usually have a difficult time
directly specifying all the desirable behaviors that a robot needs
to optimize. One common approach is to learn reward functions
from collected expert demonstrations. However, learning reward
functions from demonstrations introduces many challenges: some
methods require highly structured models, e.g. reward functions
that are linear in some predefined set of features, while others
adopt less structured reward functions that on the other hand
require tremendous amount of data. In addition, humans tend
to have a difficult time providing demonstrations on robots with
high degrees of freedom, or even quantifying reward values for
given demonstrations. To address these challenges, we present
a preference-based learning approach, where as an alterna-
tive, the human feedback is only in the form of comparisons
between trajectories. Furthermore, we do not assume highly
constrained structures on the reward function. Instead, we model
the reward function using a Gaussian Process (GP) and propose
a mathematical formulation to actively fit a GP using only
human preferences. Our approach enables us to tackle both
inflexibility and data-inefficiency problems within a preference-
based learning framework. Our results in simulations and a user
study suggest that our approach can efficiently learn expressive
reward functions for robotics tasks.

I. INTRODUCTION

Planning for robots that can act in a diverse set of environ-
ments based on human preferences can be quite challenging.
It is generally infeasible for human designers to directly
program the desired behavior for the full spectrum of possible
situations. Hence, roboticists often use machine learning in
at least part of their design to discover human preferences.
One approach is to directly learn a robot policy using expert
demonstrations [1]–[4]. However, in many interactive settings,
we are interested in more generally learning a reward function
that represents how a robot should act or interact in the world.

Reward functions are powerful tools for specifying desirable
robot behaviors, e.g. how to act safely, or what styles or goals
the robot needs to follow. Unfortunately, specifying reward
functions is not an easy task for human designers [5]–[7]. Our
goal in this work is to develop a data-efficient method that
can learn expressive reward functions.

Prior work has considered using a sequence of pairwise
comparisons between trajectories as a successful technique to
learn reward functions [8]–[15]. For example, as shown in

*First two authors contributed equally and are listed in alphabetical order.

Human Teacher

Fig. 1. The user is trying to teach the robot how to play a variant of mini-golf,
where the reward differs among eight targets. In preference-based learning,
instead of trying to design a reward function by hand or controlling the
robot to provide demonstrations, the user simply compares two demonstrated
trajectories on the robot. Here, ξA and ξB demonstrate two trajectories that
correspond to hitting the ball towards the blue or green targets.

Fig. 1, the robot can demonstrate the blue and green trajec-
tories, ξA and ξB , and ask the human designer to compare
the two. Preference-based reward learning can then leverage
a sequence of pairwise comparisons to accurately estimate a
reward function.

However, preference-based learning techniques are in gen-
eral not very data-efficient, as each pairwise comparison only
provides 1 bit of information, i.e., if ξA is preferred over
ξB or vice versa. Therefore, active learning is commonly
employed in this framework to find the most informative or
diverse sequence of questions for efficiently converging to the
underlying reward function [12]–[14], [16]–[23].

Unfortunately, most prior active reward learning works rely

on a strong assumption about the structure of the reward
function, i.e., the reward function is a linear combination
of a set of hand-coded features. While this assumption is
commonly needed for active learning to scale, it is very
limiting because linear reward functions are not sufficiently
expressive. For example, a linear reward would require several
features for the human teacher to be able to specify every
reward configuration of targets in the task demonstrated in
Fig. 1, i.e., how targets compare to each other. The features
to this task could be, for example, distances to each and
every target. On the other hand, if the reward model was
nonlinear, one can capture all possible configurations with only
two features: speed for how far the ball will be thrown, and
angle for which direction to shoot. While neural networks or
kernel functions can provide this flexibility, these techniques
considerably increase the number of parameters needed, which
prohibits (or renders useless the advantage of) active learning
algorithms.

Our key insight is to model the reward function
using a Gaussian Process (GP) [24]. GPs are non-
parametric models that can capture nonlinearities,
allowing us to actively and efficiently learn highly
expressive reward functions.

In this work, we propose a mathematical framework for
actively fitting a GP using only pairwise comparisons between
two trajectories, which we call preference data. Leveraging
GPs, instead of linear models with hand-designed features, im-
proves the expressiveness of reward functions by incorporating
nontrivial nonlinearities. Besides, our active query generation
method enables us to still get the benefits of active learning.

We make two main contributions in this work:
� We propose a data-efficient mathematical framework for

actively regressing a GP with preference data to learn
expressive reward functions from humans.

� We demonstrate the performance of our framework
through simulated environments and user studies on a
manipulator robot playing a variant of mini-golf based
on different human preferences. Our results show our
approach can be used for reward learning in complex and
interesting settings and is more data-efficient than various
other baselines.

II. RELATED WORK

In this section, we will discuss the prior work focused on
learning reward functions from demonstration, or other sources
of data, as well as related work in Gaussian process regression
and its relation to our work.

Learning reward functions from demonstrations. Prior
work has studied learning reward functions from collected
expert demonstrations. This is commonly referred to as in-
verse reinforcement learning (IRL), where we assume human
demonstrations are based on them approximately optimizing
a reward function [25]–[29]. The learned reward function can
then be used by a robot to optimize its actions in the broad
range of environments.

While IRL has shown promising results in a variety of
domains, robots, especially manipulators with high degrees of
freedom, are often too difficult to manually operate [30]–[34].
Moreover, recent studies in autonomous driving, where the
high degrees of freedom of a robot is not an issue, suggest
that people do not prefer an autonomous car to follow their
own demonstrations and instead prefer a different behavior
that tends to be more timid [35]. These indicate that one needs
to go beyond human demonstrations to properly capture the
preferred reward function.

In our framework, instead of relying on human demonstra-
tions, we learn the reward functions through the preference
queries. Therefore, our method does not require experts who
can control the system in the desirable way.

Learning reward functions from other sources of data.
In addition to demonstrations and physical corrections [36],
[37], where the robot attempts to learn the reward function
through physical human interference, learning from rankings
[10] is another popular approach. A particular case of this is
when the rankings are only pairwise comparisons, which we
call preference queries. Previous works have investigated the
use of preference queries for reward learning. Sadigh et al.
[12] proposed an acquisition function to actively generate the
queries. Further studies extended this approach to batch-active
methods [16], [17], rankings instead of pairwise comparisons
[22], general Markov Decision Process (MDP) settings [21],
and settings that integrate expert demonstrations with pref-
erence queries [20]. The reward function these prior works
assume is linear with respect to some hand-coded features.
This assumption limits the model flexibility and requires very
careful feature design. Basu et al. [19] explored modeling a
multi-modal reward function, but the reward was still linear
in each mode. Furthermore, they focused only on bi-modal
distributions. Scalability to more modes remains an issue.

In this work, we do not make the linearity assumption and
instead model the reward using a GP. Our results show this
significantly improves the expressive power of the learned
reward function, and the method is still very data-efficient.

Gaussian process regression. On the machine learning side,
González et al. [38] and Chu et al. [39] proposed methods for
preference-based Bayesian optimization and GP regression, re-
spectively, but they were not active. Furthermore, [38] required
to regress a GP over 2d-dimensions to model a d-dimensional
function, which causes a computational burden. More rele-
vantly, Houlsby et al. [40] presented an active method for
preference-based GP regression. However, similar to [38], the
regression was over a 2d-dimensional space where the learned
model predicts the outcome of a comparison rather than out-
putting a reward value. Jensen et al. [41] showed how to update
a GP with preference data, but the active query generation was
not an interest. Kapoor et al. [42] developed an active learning
approach for classification with GPs. This is a specific case of
our problem, as the labels in classification are consistent, i.e.,
the labels assigned to the samples in the dataset, even if they
are incorrect, do not change during training. In our case, the

user can respond to the same preference query inconsistently
depending on their noise model. Houlsbyet al. [43] and Daniel
et al. [44] proposed active GP �tting methods for classi�cation
and reward learning, respectively. While the latter focused on
robotics tasks, they were not preference-based. Hence, they
may be infeasible in many applications as it is dif�cult for
humans to assign actual reward values.

In this work, we propose an active query generation method
for preference-based GP regression. While being data-ef�cient,
this method also does not require the humans to assign actual
reward values to the trajectories for �tting the GP.

III. PROBLEM FORMULATION

We model the environment the robot is going to operate in as
a �nite-horizon deterministic MDP. We usest 2 S to denote
the state andat 2 A for the action (control inputs) at timet.
A trajectory� 2 � within this MDP is a sequence that consists
of the initial position and the actions:� = (s0; a0; a1; : : : ; aT),
whereT is the �nite time horizon.

We assume a reward function over trajectories,R : � ! R,
that encodes the human user's preferences about how they
want the system to operate.

We assume the reward functionR can be formulated as
R(�) = f ((�)) , where	 : � ! Rd de�nes a set of trajectory
features, e.g. average speed and minimum distance to the
closest car in a driving trajectory. However, we emphasize that
this formulation ofR enables a more general form of functions
that does not require strong assumptions – such as linearity in
the features – which is commonly put in place when learning
reward functions. We use a GP to modelf , which allows us
to avoid strong assumptions about the form off .1

Our goal is to learn this more general form of reward
functions using preference data in the form of pairwise com-
parisons. The robot will demonstrate a queryQ consisting
of two trajectories,� A and � B as shown in Fig. 1 with blue
and green curves, to the user, and will ask which trajectory
they prefer. The user will respond to this query based on their
preferences. The user's response provides useful information
about the underlying preference reward functionR. Of course,
we cannot assume human responses are perfect for every
query, so we model the noise in their responses using the
commonly adopted probit model, which assumes humans
make a binary decision between the two trajectories noisily
based on the cumulative distribution function (cdf) of the
difference between the two reward values:

P(q = � A j Q = f � A ; � B g) = P (R(� A) � R(� B) > v) ;

whereq 2 Q denotes the user's choice, andv � N (0; 2� 2)
for some standard deviation�

p
2. Therefore, equivalently:

P(q = � A j Q = f � A ; � B g) = �
�

R(� A) � R(� B)
p

2�

�
; (1)

where� is the cumulative distribution function of the standard
normal.

1Due to computation reasons, we assumed is small. Compared to previous
works which assumeR to be linear in features, this is a very mild assumption.

Having de�ned the problem setting, we are now ready to
present our method for learning data-ef�cient and expressive
reward functions using GPs.

IV. M ETHODS

In this section, we �rst give some background information
about Gaussian Processes. We then introduce preference-based
GP regression, where we show how to update a GP with
the results of pairwise comparisons. Finally, we present our
approach to active preference query generation, where we
discuss how to �nd the most informative query that accelerates
the learning.2 To simplify the notation, we replace	(�) with
	 , with superscripts and subscripts when needed.

A. Gaussian Processes
We start by introducing the necessary background on GPs for
our work. We refer the readers to [24] for other uses of GPs
in machine learning.

Suppose we are given a dataset	 = (i)N
i =1 , where	 i 2

Rd. We employ a probabilistic point of view forf by modeling
it using a GP, which enables us to model nonlinearities and
uncertainties well without introducing parameters. We have:

P(f j � ; K) =
exp

�
� 1

2 (f � �)> K � 1(f � �)
�

(2�)N= 2jK j1=2
; (2)

wheref = (f (i))N
i =1 , � andK are the mean vector and the

covariance matrix of the GP distribution for theN items in
the dataset. Put it in another way,f follows a multivariate dis-
tribution. The covariance matrix depends on the used kernel.
In this work, we use a variant of radial basis function (RBF)
kernel with hyperparameter� :

k(i ; 	 j) = exp
�
� � k	 i � 	 j k2

2

�
� �k(i ; 	 j);

�k(i ; 	 j) = exp
�
� � k	 i � �	 k2

2 � � k	 j � �	 k2
2

�
;

where �	 2 Rd is an arbitrary point for which we assume
f (�) = 0 . This is important because the query responses
only depend on the relative difference between the two reward
function values at the trajectories, i.e.,f ()+ c for anyc 2 R
would have the same likelihood for a dataset asf () . By
setting f (�) = 0 for some arbitrary�	 2 Rd, we dissolve
this ambiguity. It does not introduce an assumption because
for any function f 0 and for any point �	 , one can de�ne
f () = f 0() � f 0(�) without loss of generality—bothf 0

and f will encode the same preferences. Finally, this variant
of the RBF kernel is still positive semi-de�nite, because it is
equivalent to the covariance kernel of a GP which is initialized
with an initial data point and a standard RBF kernel prior.

B. Preference-based GP Regression
In preference-based learning, we have a dataset
	 = (((1)

i ; 	 (2)
i))N

i =1 , consisting of pairs of trajectories
	 (1)

i ;	 (2)
i 2 Rd, and user responsesq = (qi)N

i =1 , where
qi 2 f 0; 1g indicates whether the user preferred	 (1)

i or 	 (2)
i .

Accordingly, K is now a2N � 2N matrix, whose rows and

2We make our Python code for active query generation publicly available
at https://github.com/Stanford-ILIAD/active-preference-based-gpr.

https://github.com/Stanford-ILIAD/active-preference-based-gpr

columns correspond to	 j
i ; 8i 2 f 1; : : : ; N g; 8j 2 f 1; 2g.

Similarly, � is a 2N -vector. Using a Bayesian approach to
update the GP with new preference data(; q) gives:

P(f j � ; K ; 	 ; q) / P(q j f; � ; K ;) P(f j � ; K ;)

= P(q j f;) P(f j � ; K): (3)

Here, the �rst term is just the probabilistic human response
model given in Eqn. (1), and the second term is Eqn. (2).
However, this posterior does not follow a GP distribution
similar to Eqn. (2), and becomes analytically intractable [41].

Prior works have shown it is possible to perform some
approximation such that the posterior is another GP [24], [41].
The most common approximation techniques are

� Laplace approximation, where the idea is to model the
posterior as a GP such that the mode of the likelihood
is treated as the posterior mean, and a second-order
Taylor approximation around the maximum of the log-
likelihood gives the posterior covariance. This technique
is computationally very fast.

� Expectation Propagation (EP), where the idea is to ap-
proximate each factor of the product by a Gaussian. EP is
an iterative method that processes each factor iteratively
to update the distribution to minimize its KL-divergence
with the true posterior. While it is more accurate than
Laplace approximation, it is slower in practice [45].

In this paper, we use the former for its computational ef�-
ciency. Hence, we now show how to compute the quantities for
Laplace approximation, i.e., posterior mean and covariance.

Finding the posterior mean.We use the mode of the posterior
as an approximation to the posterior mean:

arg max
f

(log (p(q j 	 ; f)) + log (P(f j))) (4)

Because the preference data are conditionally independent, the
�rst term can be written as:

log (P(q j 	 ; f)) =
NX

i =1

logP(qi j 	 i ; f)

=
NX

i =1

log �

f ((1)

i) � f ((2)
i)

p
2�

!

due to Eqn. (1). Adopting a zero-mean prior forf , we can
write the second term of the optimization (4) as:

log (P(f j)) = �
1
2

logjK j � N log 2� �
1
2

f > K � 1f

Armed with these two expressions, we can now optimize the
log-likelihood and thus �nd the mode of it to approximate the
posterior mean.

Finding the posterior covariance matrix. Following [24],
and omitting the derivation details for brevity, the posterior
covariance matrix is(K � 1 + W) � 1 whereW is the negative
Hessian of the log-likelihood:

Wij = �
@2 log (P(q j 	 ; f))

@f(i) @f(j)
:

Now, we know how to approximate the posterior mean

and the posterior covariance for the Laplace approximation
of Eqn. (3). This allows us to model and update the reward
with preference data using a GP.

We also want to perform inference from this approximated
GP. Inference is not only useful for active query generation,
but it also enables us to compute the reward expectations and
variances given a trajectory.

Inference. Given two points	 (1)
� ; 	 (2)

� 2 Rd, we want to be
able to compute the expected mean rewards� � and also the
covariance matrix between those two pointsK � , both of which
will be useful for active query generation. These are given by:

� � = E
h
f � j 	 ; q; 	 (1)

� ; 	 (2)
�

i
= k>

� K � 1f ; (5)

wherek� ij = k((i)
� ; 	 j) is a 2 � 2N matrix, and

K � = K 0 � k� (I 2N + WK) � 1 W k>
� ; (6)

where K 0ij = k
�

	 (i)
� ; 	 (j)

�

�
is a 2 � 2 matrix, I 2N is the

2N � 2N identity matrix.
Equipped with all these tools which enable us to ap-

proximate the posterior distribution with a GP and perform
inference over it, we are now ready to present our contributions
on the active query generation.
C. Active Query Synthesis for Reward Learning
While we now know how to learn the reward functionf
using only pairwise comparisons, this endeavor can require
tremendous amount of data, because each query will give
at most1 bit of information. Furthermore, we can expect a
decreasing trend in the information gain as we learn the reward
function. Therefore, it is important to select the queries for
the human such that each query gives as much information as
possible. For linear reward models, previous work has shown
that this can be done by maximizing the mutual information,
which also makes the queries easy for the user [18]. Extending
this formulation to the reward functions modeled with a GP
is not trivial, because one needs to sample from the GP many
times for each trajectory, whereas a linear reward form allows
the reward prediction after sampling the linear weight terms
only once.

Hence, for the active query generation, our goal is to
perform information gain maximization with GPs.

Problem 1. Formally, we want to solve the following problem:

	 (1)
� ; 	 (2)

� = arg max
	 (1) ;	 (2)

I (f ; q j 	 ; 	 ; q);

whereI is the mutual information andq is the response to the
query 	 = ((1) ; 	 (2)). This optimization is equivalent to

arg max
	 (1) ;	 (2)

�
H (q j 	 ; 	 ; q) � Ef � P (f j 	 ;q) [H (q j 	 ; f)]

�
;

(7)

whereH is the information entropy.

This optimization can be interpreted as follows: On one
hand, maximizing the �rst entropy termH (q j 	 ; 	 ; q)
encourages fast convergence by maximizing the uncertainty of
the outcome of every query for the learned GP model. On the

other hand, minimizing the second entropy termH (q j 	 ; f)
encourages the ease of responding to the queries by the user
meaning the user should be certain about their choices.

We defer the full derivation of (7) to the appendix, but here
we give an easy-to-implement formulation of the optimization.
Denoting the posterior mean off ((i)), which is obtained
using Eqn. (5), with� (i) , the objective function can be written
as

h

�

� (1) � � (2)

p
2� 2 + g((1) ; 	 (2))

!!

� m () (8)

where

g((1) ; 	 (2)) =Var
�

f ((1))
�

+ Var
�

f ((2))
�

� 2 Cov
�

f ((1)); f ((2))
�

;

whose terms can be computed using Eqn. (6);h is the binary
entropy function, i.e.,

h(p) = � p log2(p) � (1 � p) log2(1 � p);

and

m () =

p
� ln(2) � 2 exp

�
� (� (1) � � (2))2

� ln(2) � 2 +2 g((1) ;	 (2))

�

p
� ln(2) � 2 + 2g((1) ; 	 (2))

:

Synthesizing queries that maximize this objective will give
us very informative data points for preference-based GP re-
gression and improve data-ef�ciency.

Previously, Biyik et al. [18] have shown for the linear re-
ward models that using an information gain based formulation
accelerates the learning whereas volume removal based meth-
ods (such as [12]) rely on local optima and can produce trivial
queries that compare the exact same trajectory and so gives no
information. In the following, we show our formulation also
does not suffer from this trivial query problem.

Remark 1. The trivial query 	 = f 	 (A) ; 	 (A) g does not
maximize our acquisition function given in(8), and is in fact
a global minimizer.

Proof: For the query	= f 	 (A) ;	 (A) g, we rewrite (8) as

h

�

� (A) � � (A)

p
2� 2 + g((A) ; 	 (A))

!!

� m () = 1 � m()

where Var
�
f ((A))

�
= Cov

�
f ((A)); f ((A))

�
, and so

g((A) ; 	 (A)) = 0 , and

m () =

p
� ln(2) � 2 exp

�
� (� (A) � � (A))2

� ln(2) � 2 +2 g((A) ;	 (A))

�

p
� ln(2) � 2 + 2g((A) ; 	 (A))

= 1

which makes the objective value0. Since the information gain
has to be nonnegative, this completes the proof that the trivial
query is a global minimizer of the objective.

V. SIMULATION EXPERIMENTS

In this section, we present our experiments in two simulation
domains to demonstrate how (i) GP rewards improve expres-
siveness over linear reward functions, and (ii) active query

Fig. 2. Sample trajectories are shown for the two simulation environments. In
Driver, another car is cutting in front of the ego vehicle. InTosser, the robot
must hit the dropping capsule such that it will fall into one of the baskets.

generation improves data-ef�ciency over random querying.

A. Simulation Environments
To validate our framework on robotics tasks, we used two
simulation environments: a 2DDriver simulation [46] and
a MuJoCo [47] environment to simulate aTosserrobot that
tries to throw an object into a basket [16]. We show visuals
from these environments with sample trajectories in Fig. 2. For
example inDriver, the user is asked whether they would move
forward or backward in the given scenario. While the users
would have a common response to this query, some questions
may differ among the users. For instance in Tosser, the query
asks the user whether to throw the ball into the green basket or
to drop it instead. Depending on the users' preferences about
the green basket, different users may have different responses.

In these two environments, we use the following simple
features for the function	 similar to [16]:

� Driver: Distance to the other car, speed, heading angle,
distance to the closest lane center.

� Tosser: The maximum horizontal range, and the number
of capsule �ips.

In contrast to what the previous work reported, here we do not
need to �ne-tune the feature parameters to learn the reward
functions because GPs can effectively capture nonlinearities.

Simulated Human Model. We simulated human responses
with an underlying true reward functionf with some Gaussian
noise, in accordance with Eqn. (1). We modeledf as either a
degree-of-two polynomial or a linear function. In both cases,
we selected the parameters off as i.i.d. random samples
from the standard normal distribution. We repeated each
simulation experiment5 times with varying underlying true
reward functions.

B. Baselines
For our analyses, we compared three methods:

� RANDOMGP: The reward is modeled using a Gaussian
Process. The two distinct trajectories selected in each
training query are sampled from a training dataset uni-
formly at random.

� ACTIVEL INEAR: The reward is modeled as a linear
combination of features, and the active query generation
method of [18] selects the most informative comparison
queries at every step of training.

	Introduction
	Related Work
	Problem Formulation
	Methods
	Gaussian Processes
	Preference-based GP Regression
	Active Query Synthesis for Reward Learning

	Simulation Experiments
	Simulation Environments
	Baselines
	Evaluation

	User Studies
	Experiment Setup
	Subjects and Procedure
	Results and Discussion

	Conclusion
	Appendix
	Active Query Generation Derivation

