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Transfer Reinforcement Learning across Homotopy
Classes

Zhangjie Cao*! and Minae Kwon*? and Dorsa Sadigh®

Abstract—The ability for robots to transfer their learned
knowledge to new tasks—where data is scarce—is a fundamental
challenge for successful robot learning. While fine-tuning has
been well-studied as a simple but effective transfer approach in
the context of supervised learning, it is not as well-explored in
the context of reinforcement learning. In this work, we study the
problem of fine-tuning in transfer reinforcement learning when
tasks are parameterized by their reward functions, which are
known beforehand. We conjecture that fine-tuning drastically
underperforms when source and target trajectories are part
of different homotopy classes. We demonstrate that fine-tuning
policy parameters across homotopy classes compared to fine-
tuning within a homotopy class requires more interaction with
the environment, and in certain cases is impossible. We propose
a novel fine-tuning algorithm, Ease-In-Ease-Out fine-tuning, that
consists of a relaxing stage and a curriculum learning stage to
enable transfer learning across homotopy classes. Finally, we
evaluate our approach on several robotics-inspired simulated
environments and empirically verify that the Ease-In-Ease-Out
fine-tuning method can successfully fine-tune in a sample-efficient
way compared to existing baselines.

Index Terms—Learning (artificial intelligence), Intelligent sys-
tems, Learning systems

I. INTRODUCTION

One of the goals of transfer learning is to efficiently learn
policies in tasks where sample collection is cheap and then
transfer the learned knowledge to tasks where sample collection
is expensive. Recent deep reinforcement learning (Deep RL)
algorithms require an extensive amount of data, which can be
difficult, dangerous, or even impossible to obtain [29], [37],
[47], [30]. Practical concerns regarding sample inefficiency
make transfer learning a timely problem to solve, especially
in the context of RL for robotics. Robots should be able to
efficiently transfer knowledge from related tasks to new ones.
For instance, consider an assistive robot that learns to feed
a patient with a neck problem. The robot could not learn
a sophisticated feeding policy when directly trained with a
disabled patient in-the-loop, due to the limited number of
interactions with the patient. Instead, the robot can learn how
to feed abled-bodies, where it is easier to obtain data, and
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transfer the learned knowledge to the setting with the disabled
patient using only a few samples.

We study transfer in the reinforcement learning setting where
different tasks are parameterized by their reward function.
While this problem and its similar variants have been studied
using approaches like meta-RL [14], [45], [&], [16], [20],
multitask learning [34], [42], and successor features [1], fine-
tuning as an approach for transfer learning in RL is still not
well-explored. Fine-tuning is an important method to study
for two reasons. First, it is a widely-used transfer learning
approach that is very well-studied in supervised learning [28],
[21], [46], but the limits of fine-tuning have been less studied
in RL. Second, compared to peer approaches, fine-tuning does
not require strong assumptions about the target domain, making
it a general and easily applicable approach. Our goal is to
broaden our understanding of transfer in RL by exploring when
fine-tuning works, when it doesn’t, and how we can overcome
its challenges. Concretely, we consider fine-tuning to be more
efficient when it requires less interactive steps with the target
environment.

In this paper, we find that fine-tuning does not always
work as expected when transferring between rewards whose
corresponding trajectories belong to different homotopy classes.
A homotopy class is traditionally defined as a class of
trajectories that can be continuously deformed to one another
without colliding with any barriers [4], see Fig. | (a). In this
work, we generalize the notion of barriers to include any set of
states that incur a large negative reward. These states lead to
phase transitions (discontinuities) in the reward function. We
assume that we know these barriers (and therefore homotopy
classes) beforehand, which is equivalent to assuming knowledge
of the reward functions. Knowing the reward function a-priori
is a commonly made assumption in many robotics tasks, such
as knowing goals [24], [23], [33] or having domain knowledge
of unsafe states beforehand [18], [44]. Also, reinforcement
learning algorithms naturally assume that the reward function
is available [40]. Generalizing the notion of barriers allows
us to go beyond robotics tasks classically associated with
homotopy classes, e.g., navigation around barriers, to include
tasks like assistive feeding. Our key insight is that fine-tuning
continuously changes policy parameters and that leads to
continuously deforming trajectories. Hence, fine-tuning across
homotopy classes will induce trajectories that intersect with
barriers. This will introduce a high loss and gradients that
point back to the source policy parameters. So it is difficult
to fine-tune the policy parameters across homotopy classes.
To address this challenge, we propose a novel Ease-In-Ease-
Out fine-tuning approach consisting of two stages: a Relaxing
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Stage and a Curriculum Learning Stage. In the Relaxing Stage,
we relax the barrier constraint by removing it. Then, in the
Curriculum Learning Stage, we develop a curriculum starting
from the relaxed reward to the target reward that gradually
adds the barrier constraint back.

The contributions of the paper are summarized as follows:

o We introduce the idea of using homotopy classes as a
way of characterizing the difficulty of fine-tuning in rein-
forcement learning. We extend the definition of homotopy
classes to general cases and demonstrate that fine-tuning
across homotopy classes requires more interaction steps
with the environment than fine-tuning within the same
homotopy class.

e We propose a novel Ease-In-Ease-Out fine-tuning ap-
proach that fine-tunes across homotopy classes, and
consists of a relaxing and a curriculum learning stage.

o We evaluate Ease-In-Ease-Out fine-tuning on a variety of
robotics-inspired environments and show that our approach
can learn successful target policies with less interaction
steps than other fine-tuning approaches.

II. RELATED WORK

Fine-tuning. Fine-tuning is well-studied in the space of
supervised learning [25], [17], [32], [26], [19], [12], [36].
Approaches such as L2-SP penalize the Euclidean distance of
source and fine-tuned weights [27]. Batch Spectral Shrinkage
penalizes small singular values of model features so that un-
transferable spectral components are repressed [7]. Progressive
Neural Networks (PNN) transfer prior knowledge by merging
the source feature into the target feature at the same layer [35].
These works achieve state-of-the-art fine-tuning performance
in supervised learning; however, directly applying fine-tuning
methods to transfer RL does not necessarily lead to successful
results as supervised learning and reinforcement learning differ
in many factors such as access to labeled data or the loss
function optimized by each paradigm [2]. We compare our
approach with these fine-tuning methods for transfer RL.

In fine-tuning for robotics, a robot usually pre-trains its
policy on a general source task, where there is more data
available, and then fine-tunes to a specific target task. Recent
work in vision-based manipulation shows that fine-tuning for
off-policy RL algorithms can successfully adapt to variations
in state and dynamics when starting from a general grasping
policy [22]. As another example, RoboNet trains models on
different robot platforms and fine-tunes them to unseen tasks
and robots [10]. A key difference is that our work proposes a
systematic approach using homotopy classes for discovering
when fine-tuning can succeed or fail. This is very relevant to
existing literature in this domain, as our approach can explain
why a general policy, e.g., a general grasping policy, can or
cannot easily be fine-tuned to more specific settings.
Transfer Reinforcement Learning. There are several lines
of work for transfer RL including successor features, meta-
RL and multitask learning. We refer the readers to [41] for
a comprehensive survey. We compare these works to our
approach below.

Successor Features. Barreto et al., address the same reward
transfer problem as ours by learning a universal policy across

tasks based on successor features [1]. However, this work
makes a number of assumptions about the structure of the
reward function and requires that the rewards between source
and target tasks be close to each other, while our work has no
such constraints.

Meta-RL. Meta learning provides a generalizable model from
multiple (meta-training) tasks to quickly adapt to new (meta-
test) tasks. There are various Meta RL methods including RNN-
based [14], [45], [8], gradient-based [16], [20], [8], or meta-
critic approaches [39]. The gradient-based approach is the most
related to our work, which finds policy parameters (roughly
akin to finding a source task) that enable fast adaptation via
fine-tuning. Note that all meta-RL approaches assume that
agents have access to environments or data of meta-training
tasks, which is not guaranteed in our setting. Here our focus
is to discover when fine-tuning is generally challenging based
on homotopy classes. In our experiments we compare our
algorithm to core fine-tuning approaches rather than techniques
that leverage ideas from fine-tuning or build upon them.

Multitask learning. Other works transfer knowledge by
simultaneously learning multiple tasks or goals [34]. In these
works, transfer is enabled by learning shared representations of
tasks and goals [11], [42], [34], [31]. In our work, we consider
the setting where tasks are learned sequentially.

Regularization. Cobbe et al’s work [9] proposes a metric
to quantify the generalization ability of RL algorithms and
compare the effects of different regularization techniques on
generalization. The paper compares the effects of deeper
networks, batch normalization, dropout, L2 Regularization,
data augmentation and stochasticity (e-greedy action selection
and entropy bonus). The proposed techniques are designed
for general purpose transfer reinforcement learning but are
not specially designed for transfer reinforcement learning
across homotopy classes. We compare our approach against
using deeper networks, dropout, and entropy bonuses in our
Navigation and Lunar Lander experiments and show that these
techniques alone are not sufficient to transfer across homotopy
classes (see supplementary materials).

III. FINE-TUNING ACROSS HOMOTOPY CLASSES

In transfer reinforcement learning, our goal is to fine-tune
from a source task to a target task. We formalize a task using
a Markov Decision Process M = (S, A,p, R, po,7), where S
is the state space, A is the action space, p : S x Ax S — [0, 1]
is the transition probability, pg is the initial state distribution,
R :S x A— R is the reward function, and + is the discount
factor. We denote M as the source task and M; as the
target task. We assume that M and M, only differ on reward
function, i.e., Ry # R:. These different reward functions across
the source and target task can for instance capture different
preferences or constraints of the agent. A stochastic policy
m: S x A — [0,1] defines a probability distribution over
the action in a given state. The goal of RL is to learn an
optimal policy 7*, which maximizes the expected discounted
return 7, = EfNW[GT(g)] = ESONPD,TF [Ziozo ’YTR(ST’GT)]'
We define a trajectory to be the sequence of states the agent
has visited over time £ = {sq, s1, ...}, and denote £* to be a
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Fig. 1: (a) Homotopy classes. &1 and £ are part of the same homotopy
class because they can be continuously deformed into each other. (b)
Generalized homotopy classes with expanded definitions of start, end,
and barrier states. (¢) Fine-tuning problem from left side to the right
side. The goal is to find 7 that produces &;.

trajectory produced by the optimal policy, 7*. We assume that
the optimal policy for the source environment 7} is available or
can be easily learned. Our goal is then to leverage knowledge
from 7¥ to learn the optimal policy 7} for task M;. We aim to
learn 7} with substantially fewer training samples than other
comparable fine-tuning approaches.

A. Homotopy Classes

Homotopy classes are formally defined by homotopic trajec-
tories in navigation scenarios in [4]:

Definition III.1. Homotopic Trajectories and Homotopy
Class. Two trajectories &1, & connecting the same initial and
end points s;, s, are homotopic if and only if one can be
continuously deformed without intersecting with any barriers.
Homotopic trajectories are clustered into a homotopy class.

Fig. | (a) illustrates a navigation scenario with two homotopy
classes H; and Ho separated by a red barrier. £; and &> can
be continuously deformed into each other without intersecting
the barrier, and hence are in the same homotopy class.
Generalization. The original definition of homotopy classes is
limited to navigation scenarios with deterministic trajectories
and the same start and end states. We generalize this definition
to encompass a wider range of tasks in three ways.

Firstly, we account for tasks where there could be more
than one feasible initial and end state. We generalize the initial
and end points s;, s, to a set of states S; and S,, where S;
contains all the possible starting states and S, contains all
possible ending states as shown in Fig. | (b).

Secondly, we generalize the notion of a barrier to be a
set of states that are penalized with large negative rewards
Sy = {s|R(s,a) + R'(s,a)—M}, where M is a large positive
number and R'(s, a) is the reward without any barriers. Large
negative rewards correspond to any negative phase transitions
or discrete jumps in the reward function. Importantly, the
generalized ‘barrier’ allows us to define homotopy classes
in tasks without physical barriers that penalize states with
large negative rewards (see our Assistive Feeding experiment).
Although source and target tasks differ in reward functions,
they share the same barrier states.

'Even though the presence of a single obstacle introduces infinitely many
homotopy classes, in most applications we can work with a finite number
of them, which can be formalized by the concept of Za-homology [6]. For
algorithms that compute these homology classes see [0].

Thirdly, we need to generalize the notion of continuously
deforming trajectories to trajectory distributions when consid-
ering stochastic policies. We appeal a distribution distance
metric, Wasserstein-oo (W) metric, that penalizes jumps
(discontinuities) between trajectory distributions induced by
stochastic policies. We can now define our generalized notion
of homotopic trajectories.

Definition III.2. General Homotopic Trajectories. Two
trajectories £1,&; with distributions ¢ and pe and with the
initial states s; € S; and the final states s, € S, are homotopic
if and only if one can be continuously deformed into the other
in the W, metric without receiving large negative rewards.
Definitions for the Wy, metric and W, -continuity are in
Section I of the supplementary materials.

General homotopic trajectories are depicted in Fig. | (b). The
generalized definition of a homotopy class is the set of general
homotopic trajectories. Note that using the W, metric is crucial
here. Homotopic equivalence of stochastic policies according to
other distances like total variation, KL-divergence, or even Wy
is usually trivial because distributions that even have a tiny mass
on all deterministic homotopy classes become homotopically
equivalent. On the other hand, in the W, metric, the distance
between distributions that tweak the percentages, even by a
small amount, would be at least the minimum distance between
trajectories in different deterministic homotopy classes, which
is a constant. So to go from one distribution over trajectories
to another one with different percentages, one has to make a
Jjump according to the W, metric.

B. Challenges of Fine-tuning across Homotopy Classes

Running Example. We explain a key optimization issue caused
by barriers when fine-tuning across homotopy classes. We
illustrate this problem in Fig. | (b). An agent must learn
to navigate to its goal s, € S, without colliding with the
barrier. Assuming that the agent only knows how to reach s,
by swerving right, denoted by £, we want to learn how to
reach s, by swerving left (i.e., find 7}).

We show how the barrier prevents fine-tuning from source
to target in Fig. 2. This figure depicts the loss landscape
for the target task with and without barriers. All policies are
parameterized by a single parameter # € R? and optimized
with the vanilla policy gradient algorithm [3]. Warmer regions
indicate higher losses in the target task whereas cooler regions
indicate lower losses.

Policies that collide with barriers cause large losses shown
by the hump in Fig. 2 (b). Gradients point away from this
large loss region, so it is difficult to cross the hump without a
sufficiently large step size. In contrast, in Fig. 2 (a), the loss
landscape without the barrier is smooth, so fine-tuning is easy
to converge. Details on the landscape plots are in Section IV
of the supplementary materials.

We now formally investigate how discontinuities in trajectory
space caused by barriers affect fine-tuning of model-free RL
algorithms. We let the model parameterized by 6 to induce
a policy 7y, and define the loss for the model to be £(6).
We assume that ¢(#) is high when the expected return 7, =
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Fig. 2: (a) Loss landscape of our running example without a barrier. The top-down pictures illustrate the gradient steps taken when fine-tuning
from source to target tasks. (b) Loss landscape with a barrier. Barriers create gradients away from it that make it difficult to fine-tune from

source to target tasks.

E¢r, [G(§)] is low. This assumption is satisfied in common
model-free RL algorithms such as vanilla policy gradient. We
optimize our policy using gradient descent with step size a:
Or+1 = 0, — aVgl(0)|g,. We can now define what it means
to fine-tune from one task to another.

Let 0 be the optimal set of parameters that minimizes the
cost function on the source task. Using ¢¢(6) as the loss for
target reward, fine-tuning from M, to M, for n gradient steps
is defined as: 0; <+ 0% and 011 = 0 — aVeli(0)|s, for
k=1,...,n.

We consider a policy to have successfully fine-tuned to M
if the received expected return is less than e away from the
expected reward of the optimal target policy 7; for some small
e ie., |nk, — 77;; <e.

We now theoretically analyze why it is difficult to fine-tune
across homotopy classes. Due to the space limit, we only
include our main theorem and remark in the paper. We refer
readers to the supplementary materials for the proofs.

Definition III.3. W, -continuity of policy. A policy
parameterized by 6 is W, -continuous if the mapping (6) —
mo(s,a), which maps a vector of parameters in a metric space
to a distribution over state-actions is continuous in W, metric.

Definition II.4. W, -continuity of transition probability
function. An MDP M with transition probability function p is
called W, -continuous if the mapping (s, a) — p(s, a, -) which
maps a state-action pair in a metric space to a distribution over
states is continuous in W, metric.

Theorem 1. Assume that my is a parametrized policy for
an MDP M. If both w9 and M are W -continuous, then
a continuous change of policy parameters 0 results in a
continuous deformation of the induced random trajectory
in the Wy, metric. However, continuous deformations of
the trajectories do not ensure continuous changes of their
corresponding policy parameters.

Note that the theorem also applies to deterministic policies.
For deterministic policies W,-continuity is the same as the
classical notion of continuity. Theorem | bridges the idea of
changes in policy parameters with trajectory deformation. To
use this theorem, we need assumptions on the learning rate «
and bounds on the gradients. Specifically for any #; and 65
induced by policies in two different homotopy classes, we need
to assume: |61 — 6o]| > amax(Velt(0)]g,, Vol (6)|s,). With
such small enough learning rate «, fine-tuning will always
induce trajectories that visit barrier states, Sj.

Remark 2. Intuitively, the conclusion we should reach from
Theorem | is that fine-tuning model parameters across homo-
topy classes is more difficult or even infeasible in terms of
number of interaction steps in the environment compared to
fine-tuning within the same homotopy class; this is under the
assumptions that the transition probability function and policy
of M are W, -continuous, learning rate is sufficiently small,
and gradients are bounded

IV. EASE-IN-EASE-OUT FINE-TUNING APPROACH

Our insight is that even though there are states with large neg-
ative rewards that make fine-tuning difficult across homotopy
classes, there is still useful information that can be transferred
across homotopy classes. Specifically, we first ease in or relax
the problem by removing the negative reward associated with
barriers, which enables the agent to focus on fine-tuning towards
target reward without worrying about large negative rewards.
We then ease out by gradually reintroducing the negative reward
via a curriculum. We assume the environment is alterable
in order to remove and re-introduce barrier states. In most
cases, this requires access to a simulator, which is a common
assumption in many robotics applications [13], [15], [5], [38].
We assume that during the relaxing stage as well as each
subsequent curriculum stage, we are able to converge to an
approximately optimal policy for that stage using reinforcement
learning.

Ease In: Relaxing Stage. In the relaxing stage, we re-
move the barrier penalty in the reward function, i.e., Vs €
Sy, RF%(s,a) = R'(s,a). We denote the target MDP with
relaxed reward function as M®. Note that we do not
physically remove the barriers, so the transition function does
not change. We start from 7* and train the policy in M
to obtain 7, . The relaxation removes large losses incurred
by the barriers, making fine-tuning much easier than naive
fine-tuning.

Ease Out: Curriculum Learning Stage. The relaxing stage
finds an optimal policy 775, for M. We now need to learn
the optimal policy for original target MDP M, that actually
penalizes barrier states with a large penalty — M. We develop
two curricula to gradually introduce this penalty.

(1) Reward Weight (general case). We design a general
curriculum that can be used for any environments by gradually
increasing the penalty from O to M using a series of values

2Modern optimizers and large step sizes can help evade local minima but
risk making training unstable when step sizes are too large.
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Fig. 3: Ease-In-Ease-Out fine-tuning approach for the single barrier set case. The red represents the negative reward associated with the
barrier. (a) Source task. (b) Relaxing stage. The resulting policy produces trajectories that lean toward the left but remain fairly centered.
(c)-(e) Curriculum learning stage with K = 3. We introduce larger subsets of the barrier states set S, and fine-tune. This results in trajectories

that are slowly pushed towards the left.
aq,...,a satisfying 0 < ag < ag < --- < ag = 1. We
redefine our reward function to include intermediary values:

R (s,a) — arM
R'(s,a)

sESy
SQSb

This allows us to define a sequence of corresponding tasks
MO ME where MO = MP™ and ME = M,. For
each new task MF, we initialize the policy with the previous
task’s optimal policy 7y, and train it using the reward
R (s, a; ). The detailed algorithm is shown in Algorithm
1 in Section III of the supplementary materials.

(2) Barrier Set Size. When there is only a single barrier set
Sy (i.e., Sy is connected), we can also build a curriculum
around the set itself. Here, we keep the —M penalty but

R (s, a5 ) = { (1

gradually increase the set of states that incur this penalty.

We can guarantee that our algorithm always converges as we
discuss in our analysis section below.

To build a curriculum, we can choose any state s € Sy, as
our initial set and gradually inflate this set to S; by connecting
more and more states together . For example, we can connect
new states that are within some radius of the current set. This
allows us to define a series of connected sets Sp,,..., Sy,
satisfying ) C Sy, C Sp, C -+ C Sp, = Sp. We can then
similarly redefine our reward function and parameterize it by
including intermediary barrier sets Sy,

R (s,a) — M
R'(s,a)

s € Sy,
5€Sbk

Note that the sets S;, only change the reward associated with
the states, not the dynamics.

Curriculum learning by evolving barrier set size is more
interpretable and controllable than the general reward weight
approach since for each task MY, an agent learns a policy that
avoids a subset of states, Sp,. In the general reward weight
approach, it is unclear which states the resulting policy will
never visit. A shortcoming of the barrier set size approach
is that the convergence guarantee is limited to single barriers
because if we have multiple barriers, we may not find a initial
set Sp, as described in Lemma 4. The algorithm for the barrier
set approach follows the same structure as Algorithm 1.
Analysis. For both curriculum learning by reward weight and
barrier set size, if the agent can successfully find an optimal
policy at every intermediary task, then we can find 7} for
M. For the reward weight approach, we cannot prove that at

R (s,a;8p,) = { (2)

3A connected path is defined differently for continuous and discrete state
spaces. For example, in continuous state spaces, a connected path means a
continuous path.

every stage k, the optimal policy for M¥ is guaranteed to be
obtained, but we can still have the following proposition:

Proposition 3. For curriculum learning by reward weight, in
every stage, the learned policy achieves a higher reward than
the initialized policy evaluated on the final target task.

Though the reward weight approach is not guaranteed
to achieve the optimal policy in every curriculum step, the
policy improves with respect to the final target reward. Each
curriculum step is much easier than the original direct fine-
tuning problem, which increases the possibility for successful
fine-tuning. For the barrier set size approach, we prove that
in every stage, the optimal policy for each stage is achievable.
To learn an optimal policy in each stage, finding S;, is key:

Lemma 4. There exists Sy, that divides the trajectories of T}

.
and .. into two homotopy classes.

We propose an approach for finding S;, in Algorithm 2 in
Section IIT of the supplementary materials.

Proposition 5. A curriculum starting with Sy, as described
in Lemma 4 and inflating to Sy, with sufficiently small changes
in each step, i.e., small enough for reinforcement learning to
find trajectories that should not visit barrier states, can always
learn the optimal policy m} for the final target reward.

V. EXPERIMENTS

We evaluate our approach on four axes of complexity: (1)
the size of barrier, (2) the number of barriers, (3) barriers in
3D environments, and (4) barriers that are not represented by
physical obstacles but by a set of ‘undesirable’ states.

To evaluate these axes, we use various domains including
navigation (Figs. 4, 5), lunar lander (Fig. 6 Left), fetch reach
(Fig. 6 Right), mujoco ant (Fig. 7), and assistive feeding
task (Fig. 8). We compare our approach against naive fine-
tuning (Fine-tune) as well as three state-of-the-art fine-tuning
approaches: Progressive Neural Networks (PNN) [35], Batch
Spectral Shrinkage (BSS) [7], and L2-SP [27]. We also
add training on the target task from a random initialization
(Random) as a reference, but we do not consider Random as
a comparable baseline because it is not a transfer learning
algorithm. We evaluate all the experiments using the total
number of interaction steps it takes to reach within some small
distance of the desired return in the target task. We report
the average number of interaction steps over in units of 1000
(lower is better). We indicate statistically significant differences
(p < 0.05) with baselines by listing the first letter of those
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baselines. We ran Navigation (barrier sizes), and Fetch Reach
experiments with 5 random seeds and the rest with 10 random
seeds. If more than half of the runs exceeded the maximum
number of interaction steps without reaching the desired target
task reward, we report that the task is unachievable with
the maximum number of interaction steps. Finally, we use
stochastic policies which is why our source and target policies
may not be symmetrical. Experiment details are in Section V
of the supplementary materials.

Fig. 4: Navigation environment with barrier size 5.

Barrier Sizes

| 1 3 5 7
Ours 117.4 £+ 1286 1626 + 70.57  102.7 &+ 87.8%°  112.3 £ 111.3L5f
PNN 92.2 4 102 138.6 + 92.1 159.8 4 90.6 1192 4 125
L2-SP 1382 4 61.3 >256 >256 >256
BSS >256 >256 >256 >256
Fine-tune 141.1 + 53 >256 157 4 100 241 £ 275
Random | 54.6 + 61.5 88.4 + 59.4 145 + 74.8 77.1 + 40.6

TABLE I: Larger barrier sizes make fine-tuning more challenging.
Our approach performs comparably with small sizes and outperforms
other methods with large sizes. We only use one curriculum step, so
the reward weight and the barrier set size approaches are the same.

1. Navigation. We address the first two axes by analyzing our
problem under varying barrier sizes and varying number of
homotopy classes. We experiment with our running example
where an agent must navigate from a fixed start position s; to
the goal set S, (green area).

Varying Barrier Sizes. We investigate how varying the size
of the barrier affects the fine-tuning problem going from
Right to Left. Here, we use a one-step curriculum so the
barrier set size and reward weight approaches are the same.
Table | demonstrates that when barrier sizes are small (1,3),
our approach is not the most sample efficient, but remains
comparable to other methods. With larger barrier sizes (5, 7),
we find that our method requires the least amount of training
updates. This result suggests that our approach is especially

useful when barriers are large (i.e., fine-tuning is hard).

When fine-tuning is easy, simpler approaches like starting
from a random initialization can be used.

| | | (|
| (| | (|

Fig. 5: Navigation environment with four homotopy classes.

Four Homotopy Classes. We next investigate how multiple
homotopy classes can affect fine-tuning. As shown in Fig. 5,

Transfer Tasks

LL — LR LL — RL LL — RR
Ours:barrier 88.1+£3.2 5214142 48.1+13.2P:1:0.f
Oursireward | 63.249.17-L0:F  47.1410.97:0:0.f 56.54£9.9

PNN 101.9+ 37.2 >300 1192 + 36.4

L2-SP 130.6+ 28.6 >300 >300

BSS >300 >300 >300
Fine-tune 141.2412.1 >300 >300
Random 43.5+4.1 >300 169.4£27.1

TABLE II: Fine-tuning with multiple homotopy classes.

adding a second barrier creates four homotopy classes: LL,
LR, RL, and RR. We experiment with both barrier set size
and reward weight approaches and report results when using
LL as our source task in Table II. Results for using LR, RL,
and RR as the source task are included in the supplementary
materials. We can observe that the proposed Ease-In-Ease-
out approach outperforms other fine-tuning methods. Having
multiple barriers does not satisfy the single barrier assumption,
so our reward weight approach performs better on average than
the barrier set size approach. Note that in LL — LR, Random
performs best, which implies that the task is easy to learn from
scratch and no transfer learning is needed. We conclude that
while increasing the number of barrier sets can result in a
more challenging fine-tuning problem for other methods,
it does not negatively affect our approach.

2. Lunar Lander. Before exploring 3D environments that
differ significantly from the navigation environment, we
conducted an experiment in Lunar Lander. The objective of the
game is to land on the ground between the two flags without
crashing. As shown in Fig. 6 (Left), this environment is similar
to the navigation environments in that we introduce a barrier
which creates two homotopy classes: Left and Right. However,
the main difference is that the agent is controlled by two lateral
thrusters and a main engine.

Lunar Lander

L—-R R—>L
Ours:barrier 80.46+46.58 80.23+39.76
Ours:reward | 75.13434.25P:0:f  38.43+6.46P:1:0.f
PNN 117.3543.35 128.59444.56
L2-SP 124.54+69.99 94.59451.23
BSS >300 >300
Fine-tune >300 >300
Random 232.324 48.21 162.924+49.54
TABLE III

Our approach outperforms baselines in the Lunar Lander domain.
Results are shown in Table [11. We observe that while L2-
SP suffers from a large variance and PNN needs many more
steps, both our reward weight approach and barrier set size
approach outperforms the fine-tuning methods. The reward
weight approach has a small standard deviation and performs
stably. Note that Random requires large amount of interaction
steps, meaning that training the landing task is originally
quite difficult and needs transfer reinforcement learning. Our
approach significantly reduces the number of steps needed
to learn the optimal policy in both directions.
2. Fetch Reach. We address the third axis by evaluating our
Ease-In-Ease-Out fine-tuning approach on a more realistic
Fetch Reach environment [5]. The Fetch manipulator must
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fine-tune across homotopy classes in R3. In the reaching task,
the robot needs to reach either the orange or blue tables by
stretching right or left respectively. The tables are separated
by a wall which creates two homotopy classes, as shown in
Fig. 6. Our results are shown in Table [V. We find that our
approach was the most efficient compared to baseline methods.
One reason why the baselines did not perform well was that
the wall’s large size and its proximity to the robot caused it
to collide often, making it particularly difficult to fine-tune
across homotopy classes. We found that even training from a
random initialization proved difficult. For this reason, we had
to relax the barrier constraint to obtain valid Left and Right
source policies.

@D ("t @

- -

Right

Lunar Lander Fetch Reach

Fig. 6: (Left) Lunar lander environment with two homotopy classes.
(Right) Fetch reach environment. The robot must learn to reach to
the right or left of the wall.

Fetch Reach

L —+R R — L
Ours:barrier | 308.7+167.77:%  2744130.57:1:0:f
PNN >500 >500
L2-SP >500 >500
BSS >500 >500
Fine-tune >500 >500
"~ Random | >500 >500

TABLE IV: Our approach overcomes challenging domains where
the barrier is extremely close to the robot and collision (and negative
rewards) during training is frequent. Other methods are not able to
find good policies as efficiently.

3. Mujoco Ant. Finally, we explore whether our algorithm
can generalize beyond navigation-like tasks that are tradition-
ally associated with homotopy classes. We demonstrate two
examples—Mujoco Ant and Assistive Feeding—where barrier
states correspond to undesirable states rather than physical
objects. In the Mujoco Ant environment [43], the barrier states
correspond to a set of joint angles {z € 7 £ 0.2 rad} that
the ant’s upper right leg cannot move to. The boundary of
the barrier states are shown by the red lines in Fig. 7. In our
source task, the ant moves while its upper right joint remains
greater than 7 + 0.2 rad. We call this orientation Down. Our
goal is to transfer to the target task where the joint angle is
less than % — 0.2 rad, or Up. Results are shown in Table
We do not evaluate the other direction, Up — Down, because
this direction was easy for all of our baselines to begin with,
including our own approach. We find that our approach was
the most successful in fine-tuning across the set of joint
angle barrier states.

4. Assistive Gym. We use an assistive feeding environment [15]
to create another type of non-physical barrier in the robot’s
range of motion. In Fig. 8 (right), we simulate a disabled
person who cannot change her head orientation by a large

Fig. 7: Mujoco Ant environment with a non-physical barrier. The red
lines are the barrier states, or the joint angles the leg cannot move to.
The grey dotted lines are the upper right leg’s joint limits.

Abled body

Disabled body

Fig. 8: Assistive Feeding environment. The barrier states represent the
horizontal spoon orientation. These states are undesirable for feeding
because it misplaces thel\fl%?d in thg humaRSsS 0 lvlé.tb.ee ding

0co An

Down — Up Up — Down

Ours 1420.0+268.87:1:0,f 416432700 F
PNN >10000 >2000
L2-SP >10000 >2000
BSS >10000 >2000
Fine-tune 2058.5+535.2 >2000

" Random | 2290445858  494+28

TABLE V: Our approach works well in more general environments
where barriers represent undesirable states instead of physical objects.
We only use one curriculum step, so the reward weight and the barrier
set size approaches are the same.

amount. The goal is to feed the person using a spoon. Here,
we can easily train a policy on an abled body with a normal
head orientation, as in Fig. 8 (left). However, we have limited
data for the head orientation of the disabled person (the chin is
pointing upwards as it is common in patients who use a head
tracking device). To feed a disabled body, the spoon needs to
point down, while for an abled body, the spoon needs to point
up. The barrier states correspond to holding the spoon in any
direction between these two directions when close to the mouth,
which may ‘feed’ the food to the user’s nose or chin. This
environment is an example of settings with limited data in the
target environment, i.e., interacting with the disabled person. It
also shows a setting with no physical barriers, and the ‘barrier
states’ correspond to the spoon orientations in between, which
can be uncomfortable or even unsafe. As shown in Table V,
Our Ease-In-Ease-Out fine-tuning approach learns the new
policy for the disabled person faster than training from
scratch while the other fine-tuning methods fail to learn
the target policy.

VI. DISCUSSION

Summary. We introduce the idea of using homotopy classes
to characterize the difficulty of fine-tuning between tasks with
different reward functions. We propose a novel Ease-In-Ease-
Out fine-tuning method that first relaxes the problem and
then forms a curriculum. We extend the notion of homotopy
classes, which allows us to go beyond navigation environments
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and apply our approach on more general robotics tasks. We
demonstrate that our method requires less samples on a variety
of domains and tasks compared to other fine-tuning baselines.
Limitations and Future Work. Our work has a number of
limitations. This includes the need for accessing the barrier
states a priori. However, our assistive gym example is a step
towards considering environments where barrier states are not
as clearly defined a priori. In the future, we plan to apply our
methods to other robotics domains with non-trivial homotopy
classes by directly finding the homotopy classes [6] and then
using our algorithm to fine-tune.
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