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Abstract— The actions of an autonomous vehicle on the road
affect and are affected by those of other drivers, whether
overtaking, negotiating a merge, or avoiding an accident. This
mutual dependence, best captured by dynamic game theory,
creates a strong coupling between the vehicle’s planning and its
predictions of other drivers’ behavior, and constitutes an open
problem with direct implications on the safety and viability of
autonomous driving technology. Unfortunately, dynamic games
are too computationally demanding to meet the real-time
constraints of autonomous driving in its continuous state and
action space. In this paper, we introduce a novel game-theoretic
trajectory planning algorithm for autonomous driving, that
enables real-time performance by hierarchically decomposing
the underlying dynamic game into a long-horizon ‘strategic”
game with simplified dynamics and full information structure,
and a short-horizon “tactical” game with full dynamics and
a simplified information structure. The value of the strategic
game is used to guide the tactical planning, implicitly extending
the planning horizon, pushing the local trajectory optimization
closer to global solutions, and, most importantly, quantitatively
accounting for the autonomous vehicle and the human driver’s
ability and incentives to influence each other. In addition, our
approach admits non-deterministic models of human decision-
making, rather than relying on perfectly rational predictions.
Our results showcase richer, safer, and more effective au-
tonomous behavior in comparison to existing techniques.

I. INTRODUCTION

Imagine you are driving your car on the highway and, just
as you are about to pass a large truck on the other lane, you
spot another car quickly approaching in the wing mirror.
Your driver’s gut immediately gets the picture: the other
driver is trying to squeeze past and cut in front of you at the
very last second, barely missing the truck. Your mind races
forward to produce an alarming conclusion: it is too tight—
yet the other driver seems determined to attempt the risky
maneuver anyway. If you brake immediately, you could give
the other car enough room to complete the maneuver without
risking an accident; if you accelerate, you might close the
gap fast enough to dissuade the other driver altogether.

Driving is fundamentally a game-theoretic problem,
in which road users’ decisions continually couple with
each other over time. Accurately planning through these
road interactions is a central, safety-critical challenge in
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Fig. 1: Demonstration of our hierarchical game-theoretic planning frame-
work on a simulated overtaking scenario. The heatmap displays the hierar-
chical planner’s strategic value, ranging from red (low value) to blue (high
value), which accounts for the outcome of possible interactions between the
two vehicles. Left: Using a short-horizon trajectory planner, the autonomous
vehicle slows down and is unable to overtake the human. Center: Using the
hierarchical game-theoretic planner, the autonomous vehicle approaches the
human from behind, incentivizing her to change lanes and let it pass (note
the growth of a high-value region directly behind the human in the left lane).
Right: If the human does not maneuver, the autonomous vehicle executes a
lane change and overtakes, following the higher values in the right lane.

autonomous driving. Most approaches in the literature follow
a “pipeline” approach that generates predictions of the trajec-
tories of human-driven vehicles and then feeds them to the
planning module as unalterable moving obstacles [1-4]. This
can lead to both excessively conservative and in some cases
unsafe behavior [5], a well-studied issue in the robotic nav-
igation literature known as the “frozen robot” problem [6].
Recent work has addressed this by modeling human
drivers as utility-driven agents who will plan their trajectory
in response to the autonomous vehicle’s internal plan. The
autonomous vehicle can then select a plan that will elicit the
best human trajectory in response [7, 8]. Unfortunately, this
treats the human as a pure follower in the game-theoretic
sense, effectively inverting the roles in previous approaches.
That is, the human is assumed to take the autonomous vehi-
cle’s future trajectory as immutable and plan her own fully
accommodating to it, rather than try to influence it. Further,
the human driver must be able to observe, or exactly predict,
the future trajectory planned by the autonomous vehicle,
which is unrealistic beyond very short planning horizons.
In this work, we introduce a hierarchical game-theoretic
framework to address the mutual influence between the
human and the autonomous vehicle while maintaining com-
putational tractability. In contrast with recent game-theoretic
planning schemes that assume open-loop information struc-
tures [9-11], our framework hinges on the use of a fully
coupled interaction model in order to plan for horizons
of multiple seconds, during which drivers can affect each



other’s behavior through their actions over time. We do
this by computing the optimal value and strategies for a
dynamic nonzero-sum game with a long horizon (typically a
few seconds) and a full closed-loop feedback information
structure [12, 13]. In order to maintain tractability, we
propose solving this long-horizon game using simplified
dynamics, which will approximately capture the vehicles’
ability to execute different trajectories. The resulting long-
term value, which captures the expected outcome of the
strategic interaction from every state, can then be used as
an informative terminal component in the objective function
used in a receding-horizon planning and control scheme. This
low-level planner can use a higher-fidelity representation of
the dynamics, while only planning for a shorter time horizon
(typically less than one second) during which simplifications
in the interaction have a less critical effect [14-16].

Our framework therefore hierarchically combines:

e A strategic (high-level) planner that determines the
outcome of long-term interactions using simplified dy-
namics and fully coupled interaction.

o A tactical (low-level) planner that computes short-term
vehicle trajectories using high-fidelity dynamics and
simplified interaction, informed by the long-term value
computed by the strategic planner.

Thanks to the more accurate interaction model and the
more tractable dynamical model, the hierarchical framework
makes it possible to reason farther into the future than
most receding-horizon trajectory planners. The high-level
game value informs the trajectory optimization as a terminal
cost, implicitly giving it an approximate insight into the
longer time scale (in a similar spirit to a variety of planning
schemes, e.g. [17]). In addition, since this strategic value is
computed globally via dynamic programming, it can help
mitigate the local nature of most trajectory optimization
schemes, biasing them towards better solutions.

An important strength of our framework is that the strate-
gic planner does not require using a deterministic model of
the human, such as an ideal rational agent, but instead allows
a variety of models including probabilistic models such as
noisy rationality, commonly used in inverse optimal control
(also inverse reinforcement learning) [18, 19]. In addition,
the framework is agnostic to the concrete planner used at
the tactical level: while we demonstrate our approach with
a trajectory optimizer based on [7], this could be replaced
with other methods, including deep closed-loop prediction
models, such as [20], by introducing the strategic value as a
terminal cost term in their objective function. Therefore, the
method proposed here should not be seen as competing with
such planning schemes, but rather as complementing them.

Importantly, solving the underlying dynamic game does
not imply that the autonomous vehicle will be more selfish
or aggressive—its driving behavior will ultimately depend on
the optimization objective specified by the system designer,
which may include terms encoding comfort and safety of
other road users. With adequate objective design, our frame-
work can enable safer and more efficient autonomous driving
by planning with a more accurate model of interactions.

II. DYNAMIC GAME FORMULATION

We consider a single! human driver H and a single
autonomous system A in control of their respective vehicles.
The dynamics of the joint state z* € X C R™ of the vehicles
in the world, which we assume to be fully observable, are

o' = flat uly,uly) ()
where u! € U; C R™: is the driving control action for each
i€ {A, H} at time step ¢; we assume ; is compact.

The autonomous system is attempting to maximize an
objective that depends on the evolution of the two vehicles
over some finite time horizon, namely a cumulative return:

N
R (2N u%N w9y :ZTA(xt,uil,utH) )
t=0

The reward function r 4 captures the designer’s specifications
of the vehicle’s behavior and may encode aspects like fuel
consumption, passenger comfort, courteousness, time effi-
ciency, and safety . Some of these aspects (crucially safety)
may depend on the joint state of the two vehicles; the reward
function may also explicitly depend on the human driver’s
actions (the designer may, for instance, decide to penalize
it for causing other vehicles to maneuver abruptly). The
autonomous vehicle therefore needs to reason about not only
its own future actions, but also those of the human driver.

We assume that the autonomous vehicle has some pre-
dictive model of the human’s actions as a function of the
currently available information (the joint state, and possibly
the autonomous vehicle’s current action). The coupling in the
planning problem is then explicit. If the system models the
human as exactly or approximately attempting to maximize
her own objective function, the coupling takes the form of
a dynamic game, in which each player acts strategically as
per her own objective function accounting for the other’s
possible actions. Since both players observe the current state
at each time, this dynamic game has closed-loop feedback
information structure, and optimal values and strategies can
be computed using dynamic programming [12, 24].

Unfortunately, deriving these strategies can be computa-
tionally prohibitive due to the exponential scaling of com-
putation with the dimensionality of the joint state space
(which will be high for the dynamical models used in vehicle
trajectory planning). However, we argue that successfully
reasoning about traffic interactions over a horizon of a few
seconds does not require a full-fidelity model of vehicle dy-
namics, and that highly informative insights can be tractably
obtained through approximate models. We further argue that
it is both useful and reasonable to model human drivers as
similarly reasoning about vehicle interactions over the next
few seconds without needing to account for fully detailed
dynamics. This insight is at the core of our solution approach.

'While extension of our formulation and solution to N players is well-
defined (and relatively straightforward) in theory, in practice the solution re-
quires exponential computation in the number of interacting vehicles, which
constitutes a fundamental open problem. We thus limit the scope of this work
to pairwise interactions, and note that decomposition strategies [21, 22] and
recent prediction approaches [23] may enable tractable extensions.



ITI. HIERARCHICAL GAME-THEORETIC PLANNING

We propose a hierarchical decomposition of the interaction
between the autonomous vehicle and the human driver. At
the high level, we solve a dynamic game representing the
long-horizon interaction between the two vehicles through
approximate dynamics. At the low level, we use the players’
computed value functions as an approximation of the best
long-horizon outcome achievable by both vehicles from each
joint state, and incorporate it in the form of a guiding
terminal term in the short-horizon trajectory optimization,
which is solved in a receding-horizon fashion with a high-
fidelity model of the vehicles’ dynamics.

A. Strategic planner: Closed-loop dynamic game

Let the approximate dynamics be given by
sM = (s*, aly, ay) (3)

where s € § C R™ and af € A; C R™ are the state
and action in the simplified dynamics ¢. The index k is
associated to a discrete time step that may be equal to the
low-level time step or possibly different (typically coarser).
We generically assume that there exists a functiong : X — S
assigning a simplified state s € S to every full state = €
X C R". The approximation is usually made seeking n < n
to improve tractability. This can typically be achieved by
ignoring dynamic modes in f; with comparatively small time
constants. For example, we may assume that vehicles can
achieve any lateral velocity within a bounded range in one
time step, and treat it as an input instead of a state.

We model the dynamic game under feedback closed-loop
information (both players’ actions can depend on the current
state s but not on the state history), allowing the human
driver to condition her choice of a¥ on the autonomous
vehicle’s current action a” at every time step k, resulting
in a Stackelberg (or leader-follower) dynamic game [24].
We need not assume that the human is an ideal rational
player, but can instead allow her action to be drawn from a
probability distribution. This is amenable to the use of human
models learned through inverse optimal control methods [18,
25], and can also be used to naturally account for modeling
inaccuracies, to the extent that the human driver’s behavior
will inevitably depart from the modeling assumptions [23].

We generalize the well-defined feedback Stackelberg dy-
namic programming solution [12] to the case in which one
of the players, in this case the follower, has a noisy decision
rule: p(a%|s*, a%). The autonomous vehicle, here in the
role of the leader, faces at each time step k the nested
optimization problem of selecting the action with the highest
state-action Q value, which depends on the human’s decision
rule p, in turn affected by the human’s own Q values:

mas Q4 (5", a%) (@
ay

ko k k
cai, )] (ak)
where Q% and Q% are the state-action value functions at
time step k, and 7y : L>® — A(Apg) maps every utility
function ¢ : Ay — R to a probability distribution over Ag.

st.p(aly | 8%, ah) = 7y [QF (s (4b)

Algorithm 1: Feedback Stackelberg Dynamic Program

Data: 74(3,a4,a5), 7H(3,a44,am)
Result: V4 (3, k), Vi (5, k), a% (3, k),
Initialization
for 3 € S do

A0 Va(3, K 4+ 1) « 0;

H | Vg(5,K+1)«0;

ag (3, k)

Backward recursion
for kK + K to 0 do
for 3 € S do

for a4 € AA do
for ay € .AH do
H1 qu(amg) < 7:{1(5751A’&H)
H2 P(ay | aa) < malqu)(an);
H3 qp(aa) < >4, Plan | aa) x qu(an);
Al qA(&A)%ZaH P(dH ‘QA)X
(M(&am&}%(%))
+ Va(6(5, aa,ajy (@4)),k +1));
A2 a*(8,k) < argmaxs, qa(aa);
A3 a(8, k) < qa(aly(3,k));
H4 ay (8, k) = ap(ay (8, k));
Bs || Vu(5k) < qp(ai(3. k)

A common example of 7y (which we use in Section IV) is
a noisy rational Boltzmann policy, for which:

BQu(s,an.am) (5)

The values Qfﬁl and Q’}_I are recursively obtained in back-
ward time through successive application of the dynamic
programming equations for k = K, K —1,...,0:

Plag | s,aa4) x e

74 (s) := argmax Q% (s,a) , Vs€ S (62)
a
aby ~TH [Qiq(si,ai‘, )} , ie{kk+1} (6b)
Q];J(Skv a,kilv a];{) = 7:H(Sk7 aﬁl’ allci)+
E kHQkH(skH,WZ(skH),a?‘l) (6¢)
Q% (s",a%) = Bop Fa(s®, aly, aly) + QT (M mi (s"7)
(6d)

with s**1 from (3) and letting Q5 ™' =0, Q5™ = 0.

The solution approach is presented in Algorithm 1 for
a discretized state and action grid S x AA X /lH This
computation is typically intensive, with complexity O(|$ | -
|AA\ . \AH| K ), but is also extremely parallelizable, since
each grid element is independent of the rest and the entire
grid can be updated simultaneously, in theory permitting a
time complexity of O(K). Although we precomputed the
game-theoretic solution, our proposed computational method
for the strategic planner can directly benefit from the ongoing
advances in computer hardware for autonomous driving [26],



so we expect that it will be feasible to compute the strategic
value in an online setting.

Once the solution to the game has been computed, rather
than attempting to execute any of the actions in this sim-
plified dynamic representation, the autonomous vehicle can
use the resulting value V (s) := max, Q°(s,a) as a guiding
terminal reward term for the short-horizon trajectory planner.

B. Tactical planner: Open-loop trajectory optimization

In this section we demonstrate how to incorporate the
strategic value into a low-level trajectory planner. We assume
that the planner is performing a receding-horizon trajectory
optimization scheme, as is commonly the case in state-of-the-
art methods [27]. These methods tend to plan over relatively
short time horizons (on the order of 1 s), continually gen-
erating updated “open-loop” plans from the current state—
in most cases the optimization is local, and simplifying
assumptions regarding the interaction are made in the interest
of real-time computability.

While, arguably, strategic interactions can be expected
to have a smaller effect over very short time-scales, the
vehicle’s planning should be geared towards efficiency and
safety beyond the reach of a single planning window. The
purpose of incorporating the computed strategic value is
to guide the trajectory planner towards states from which
desirable long-term performance can be achieved.

We therefore formalize the tactical trajectory planning
problem as an optimization with an analogous objective
to (2) with a shorter horizon M << N and instead introduce
the strategic value as a terminal term representing an estimate
of the optimal reward-to-go between ¢t = M and ¢t = N:

M
RA(xO:hjvu%hjvu%AI) = ZTA(xt’ ufé\aui‘{)""VA (g(xt)) :

t=0
(N

The only modification with respect to a standard receding-
horizon trajectory optimization problem is the addition of the
strategic value term. Using the numerical grid computation
presented in Section III-A, this can be implemented as an
efficient look-up table, allowing fast access to values and
gradients (numerically approximated directly from the grid).
The low-level optimization of (7) can thus be performed
online by a trajectory optimization engine, based on some
short-term predictive model of human decisions conditioned
on the state and actions of the autonomous vehicle. In
our results we implement trajectory optimization similar
to [7] through a quasi-Newton scheme [28], in which the
autonomous vehicle iteratively solves a nested optimization
problem by estimating the human’s best trajectory response
to each candidate plan for the next M steps. We assume that
the human has an analogous objective to the autonomous
system, and can also estimate her strategic long-term value.
We stress, however, that our framework is more general,
and in essence agnostic to the concrete low-level trajectory
optimizer used, and other options are possible (e.g. [20, 23]).

IV. RESULTS

We analyze the benefit of solving the dynamic game
by comparing our hierarchical approach to using a tactical
planner only, as in the state of the art [7, 20]. We then
compare against extended-horizon trajectory planning with
an assumed open-loop information structure, showcasing the
importance of reasoning with the fully coupled closed-loop
feedback information of the dynamic game.

A. Implementation Details

1) Environment: We use a simulated two-lane highway
environment with an autonomous car and human-driven
vehicle. Similar to [7], both vehicles’ rewards encode safety
and performance features. For the purposes of these case
studies, both players have a preference for the left lane, and
the autonomous car is given a target speed slightly faster
than the human’s and a preference for being ahead of her.

2) Tactical Level: The dynamics of each vehicle are
given by a dynamic bicycle model with states [z;, y;, v;, 0;]
(position, speed, and heading). The planner uses a discrete
time step At = 0.1 s and M = 5 time steps. For the tactical
trajectory planning, we compute the partial derivative % for
each player and allow the optimization to proceed by iterated
local best response between candidate autonomous vehicle
plans and predicted human trajectories. If convergence is
reached, the result is a local (open-loop) Nash equilibrium
between the short-horizon trajectories [9, 11, 29].

3) Strategic Level: The full joint human-autonomous state

space is 8-dimensional, making dynamic programming chal-
lenging. Our strategic level simplifies the state and dynamics
using an approximate, lower-order representation. We con-
sider a larger time step of Ak = 0.5 s and a horizon K = 10
corresponding to 5 s. We consider one of two high-level
models, depending on the setup.
Two-vehicle setup. If the environment is a straight empty
highway, it is enough to consider the longitudinal position
of the two vehicles relative to each other: x, = T4 — Tx.
We assume the human-driven vehicle’s average velocity is
close to the nominal highway speed 30 m/s, and the vehicles’
headings are approximately aligned with the road at all times.
Finally, given the large longitudinal velocity compared to
any expected lateral velocity, we assume that vehicles can
achieve any desired lateral velocity up to 2.5 m/s? within
one time step (consistent with a typical 1.5 s lane change).
The approximate dynamics are then

[j:reh Ya, Y, i}rel] = ['Ureh wa, WH, 6A —AH _@Urel] , (8)

with the control inputs being the vehicles’ lateral velocities
wa, wy and accelerations a4, ayg, and where & is the
linearized friction parameter. This allows us to implement
Algorithm 1 on a 75 x 12 x 12 x 21 grid and compute the
feedback Stackelberg solution of the strategic game.

Additional-vehicle setup. If there are additional vehicles or
obstacles present in the environment, it becomes necessary
to explicitly consider absolute positions and velocities of
the two players’ vehicles (or at least relative to these other
objects). In this scenario, we consider a truck driving in
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(b) Hierarchical planner

(a) Low-level planner

Fig. 2: Planner comparison for the merging scenario. The low-level trajec-
tory planner overtakes but does not merge into the left lane. The game-
theoretic hierarchical planner successfully merges in front of the human.

the right lane at a constant speed vp, and assume that the
human remains in her lane. Letting 47, xgr denote the
longitudinal position of each vehicle relative to the truck
and « be the friction coefficient, the high-level dynamics are

[EAT, THT, YA, DA, VH] =
2 2
[va — V7, vy — VT, WA, a4 — vy, ag — oavyg]. (9)

We implement Algorithm 1 on a 35 X 35 X 6 x 8 x 8 grid.

4) Human simulation.: For consistency across our case
studies, we simulated the human driver’s behavior. We found
that for the maneuvers considered, a low-level trajectory
optimizer produced sufficiently realistic driving behavior. We
assume that the human driver makes accurate predictions of
the autonomous vehicle’s imminent trajectory for 0.5 s.

B. Interaction Case Studies

We compare the tactical-only trajectory planner (baseline)
against our hierarchical tactical-strategic planning scheme for
3 different driving scenarios.

1) Merge: We begin with a simple merge maneuver where
the autonomous vehicle starts ahead of the human in the
adjacent lane. The tactical planner leads the autonomous car
to successfully merge in front of the human. The hierarchical
planner also succeeds, with the strategic value guiding the
vehicle to merge more swiftly, improving performance.

Next, we consider the case where the autonomous car
starts behind the human, as depicted in Fig. 2. The tactical
autonomous car overtakes the human but does not merge
into her lane (likely a local optimum). The hierarchical
autonomous car overtakes and merges in front of the human.

2) Overtaking: We now study a complete overtaking
maneuver in which the autonomous car starts behind the
human in the same lane. The tactical autonomous car does
not successfully complete the maneuver: it first accelerates
but then brakes to remain behind the human, oblivious to the
higher long-term performance achievable through overtaking.
The hierarchical planner produces a policy that, depending
on the human’s behavior, can evolve into two alternative
strategies, shown in Fig. 1. First, the autonomous vehicle
approaches the human from behind, expecting her to have an
incentive (based on her strategic value) to change lanes and
let it pass. If this initial strategy is successful and the human
changes lanes, the autonomous vehicle overtakes without

leaving the left lane. Conversely, if the human does not begin
a lane change, the strategic value guides the autonomous
vehicle to merge into the right lane, accelerate to overtake the
human, reaching a maximum speed of 37.83 m/s (2.83 m/s
above its target speed), and merge back into the original lane.

3) Truck Cut-In: Finally we consider a scenario in which
the two vehicles are approaching a truck, assumed to drive at
a lower constant speed of 26.82 m/s. As shown in Fig. 3, the
tactical-only planner may attempt merges with little safety
margin. The hierarchical game-theoretic analysis allows us
to reason through the leverages players may have on each
other. If the autonomous vehicle has a sufficient initial speed,
the human is incentivized to slow down to allow it to merge
safely in front of her before reaching the truck. Otherwise,
she will instead accelerate, incentivizing the autonomous car
to slow down, abort the overtaking maneuver, and merge
behind her instead to pass the truck safely.

Note that we are not proposing that autonomous vehicles
should in fact carry out this type of overtaking maneuver. The
remarkable result here is in the planner’s ability to reason
about the different possible strategies given the scenario and
objectives. Also note that in this and the other example
scenarios, the roles of the human and the autonomous vehicle
can easily be interchanged, allowing the autonomous vehicle
to e.g. discourage others’ potentially unsafe maneuvers.

[0 75 1 e}
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(a) Low-level planner (b) Hierarchical planner:
human lets autonomous
vehicle cut in

(c) Hierarchical planner:
human cuts off
autonomous vehicle

Fig. 3: Tactical and hierarchical planning in the truck cut-in scenario. (a) The
tactical-only planner executes an unsafe last-second merge. (b) With enough
speed difference, the hierarchical planner first accelerates to incentivize the
human to slow down and then safely merges in front. (c) If there is little
margin, the human has an incentive to accelerate preventing the maneuver.

C. In-Depth Analysis

We now seek to shed light on why hierarchical planning
obtains better performance than tactical alone. Is the strategic
value merely lengthening the effective horizon, avoiding lo-
cal or myopic optima, or is information structure important?

1) Hierarchical vs. long-horizon tactical planning: The
hierarchical planning method provides the autonomous car
with more information about the future via the strategic value
of the long-term game, which guides the optimization to es-
cape local optima. If those were the only benefits, extending
the horizon of the tactical planner and re-initializing in differ-
ent basins of attraction ought to perform similarly. We thus
extend the horizon to 2 s (20 time steps) and perform multiple
independent optimizations at each planning cycle, initialized



from diverse trajectories for each car: full-left steer, full-right
steer, and straight steer (with acceleration input to maintain
speed). This stronger tactical planner is unable to optimize
in real time, unlike our other demonstrations, but is a good
tool for analysis. Extension beyond 2 s was not tractable.
We tested this planner in the overtaking scenario alongside
a human-driven car that is aware of the autonomous car’s
plan, which is this planner’s assumed information structure.
The planner still fails to complete the maneuver regardless
of the initialization scheme and whether the influence term
in [7] is used, resulting in the autonomous car remaining
behind the human, as shown in Fig. 4. Moreover, we tested
this planner against a human driver who maintains a constant
slow speed of 24 m/s. In this case, the autonomous car brakes
abruptly to avoid a collision and remains behind the human,
at each time step expecting her to maximally accelerate for
the next 1 s. Despite the longer horizon and more global
optimization, this new tactical planner still assumes the
wrong information structure, i.e. that the human knows the
autonomous car’s trajectory multiple seconds into the future.
This causes poor performance when the human does not in
fact adapt to the autonomous vehicle’s plan ahead of time.
2) Information structure at the tactical level: When opti-
mizing the autonomous car’s trajectory at the tactical level,
we used iterated local best response seeking a local open-
loop Nash equilibrium between the vehicles’ short-horizon
trajectories. Conversely, the implicit differentiation proposed
in [7], by which the autonomous planner estimates the
influence of each local trajectory change on human’s best
response, is consistent with the local open-loop Stackelberg
equilibrium concept, with the human as the follower. We
observed that this latter approach resulted in more aggres-
sive behavior in some situations, even when augmenting
this tactical planner with the long-term strategic value. For
example, in the hard merge scenario shown in Fig. 4, the
hierarchical car attempted to merge into the left lane before
fully overtaking the human, placing the burden on her to
avoid an imminent collision. On the other hand, the tradi-
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(b) Hierarchical planner (c) Hierarchical planner
with low-level with predict-then-plan
influence estimate low-level scheme

(a) Long-horizon
tactical-only planner

Fig. 4: Study of alternative information structures. (a) In the overtaking
scenario, the long-horizon tactical-only car accelerates, expecting the human
to match its higher speed to avoid a collision. After the human speeds up,
the autonomous car remains behind her. (b) Under the influence estimate [7]
in the low-level trajectory gradient, the hierarchical car drives more aggres-
sively in the merging scenario. (c) When augmented with the strategic value,
the “pipeline” (predict-then-plan) low-level scheme is able to overtake.

tional “pipeline” approach, in which the human’s trajectory
is predicted and fed to the planner as a moving obstacle,
failed to overtake when used by itself, but succeeded in
changing lanes and overtaking (comparably to the iterated
best response scheme) when given the strategic value term.

The results suggest that, even in short horizons, assuming
that the human can accurately anticipate and adapt to the
autonomous vehicle’s planned trajectory may lead to unsafe
situations when the actual human driver fails to preemptively
make way as expected. Running iterated local best response
between trajectories or even assuming no short-term human
adaptation at the tactical level seem to perform better as
tactical schemes within our proposed hierarchical framework.

3) Confidence in Strategic Human Model: Finally, we
discuss the effects of varying the autonomous planner’s
confidence in its high-level model of the human. Modeling
the human as a Boltzmann noisily rational agent, we can
naturally incorporate the planner’s confidence in the human
model via the inverse temperature parameter J in (5), as
done in [23]. We can then compute different strategic values
corresponding to varying levels of confidence in the hu-
man model. In the overtaking scenario, we observed that
sufficiently lowering the inverse temperature parameter led
to the autonomous vehicle choosing to remain behind the
human car instead of attempting to overtake. A lower level of
confidence in the human model discourages the autonomous
car from overtaking because the human driver is more likely
to act in an unexpected manner that may result in a collision.

V. DISCUSSION

We have introduced a hierarchical trajectory planning
formulation for an autonomous vehicle interacting with a
human-driven vehicle on the road. To tractably reason about
the mutual influence between the human and the autonomous
system, our framework uses a lower-order approximate dy-
namical model solve a nonzero sum game with closed-loop
feedback information. The value of this game is then used
to inform the planning and predictions of the autonomous
vehicle’s low-level trajectory planner.

Even with a simplified dynamical model, solving the
dynamic game will generally be computationally intensive.
We note, however, that our high-level computation presents
two key favorable characteristics for online usability. First,
it is “massively paralle]” in the sense that all states on
the discretized grid may be updated simultaneously. The
need for reliable real-time perception in autonomous driving
has spurred the development of high-performance parallel
computing hardware, which will directly benefit our method.
Second, once computed, the strategic value can be readily
stored as a look-up table, enabling fast access by the low-
level trajectory planner. Of course, strategic values would
then need to be pre-computed for a number of scenarios that
autonomous vehicles might encounter.

We believe that our new framework can work in con-
junction with and significantly enhance existing autonomous
driving planners, allowing autonomous vehicles to more
safely and efficiently interact with human drivers.
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