
Synthesis with Clairvoyance�

Orna Kupferman1, Dorsa Sadigh2, and Sanjit A. Seshia2

1 Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel
2 UC Berkeley, EECS Department, Berkeley CA, USA

Abstract. We consider the problem of automatically synthesizing, from a lin-
ear temporal logic (LTL) specification, a system that is guaranteed to satisfy the
specification with respect to all environments. Algorithms for solving the synthe-
sis problem reduce it to the solution of a game played between the system and its
environment, in which the system and environment alternate between generating
outputs and inputs respectively. Typically, the system is required to generate an
output right after receiving the current input. If a solution to the game exists, the
specification is said to be realizable.

In this paper, we consider the role of clairvoyance in synthesis, in which the
system can “look into the future,” basing its output upon future inputs. An in-
finite look-ahead transforms the realizability problem into a problem known as
universal satisfiability. A thesis we explore in this paper is that the notion of clair-
voyance is useful as a heuristic even in the general case of synthesis, when there
is no lookahead. Specifically, we suggest a heuristic in which we search for strate-
gies where the system and the environment try to force each other into hopeless
states in the game — states from which they cannot win, no matter how large the
lookahead. The classification to hopeful and hopeless states is thus based on a
modified notion of universal satisfiability where the output prefix is constrained.
Our approach uses the automata for the specification in the process of classifica-
tion into hopeful and hopeless states, and uses the structure of the automata in
order to construct the game graph, but the important point is that the game itself
is a reachability game. We demonstrate the efficiency of our approach with exam-
ples, and outline some directions for future work exploring the proposed approach.

1 Introduction

A frequent criticism against verification methods is that verification is done after signif-
icant resources have already been invested in the development of the system. The critics
argue that the desired goal is to use the specification in the system development process
in order to guarantee the design of correct systems. This is called automatic synthesis.
Formally, given a specification to a reactive system, typically by means of an LTL for-
mula, the goal in automatic synthesis is to transform it into a system that is guaranteed
to satisfy the specification.1

� This research was supported in part by NSF grant CNS-0644436 and the Gigascale Systems
Research Center, one of six research centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity.

1 To make life interesting, several different methodologies in system design are all termed “syn-
thesis”. The automatic synthesis we study should not be confused with logic synthesis, which
is a process by which an abstract form of a desired circuit behavior (typically, register transfer
level, which by itself may be the outcome of yet another synthesis procedure, termed high-level
synthesis) is turned into a design implementation by means of logic gates.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 5–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

6 O. Kupferman, D. Sadigh, and S.A. Seshia

In the late 1980s, several researchers realized that the classical approach to system
synthesis, where a system is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive [10]) systems
[1,4,21]. A reactive system interacts with its environment, and a correct system should
satisfy the specification with respect to all environments. The right way to approach
synthesis of reactive systems is to consider the situation as a (possibly infinite) game
between the environment and the system. More formally, a strategy for a system with
inputs in I and outputs in O maps finite sequences of inputs — words in (2I)∗, which
correspond to the actions of the environment so far, to an output in 2O — a suggested
action for the system. A specificationψ over I∪O is then realizable iff there is a strategy
all of whose computations satisfy ψ, whre the computation of a strategy f : (2I)∗ → 2O

on a infinite sequence i0, i1, i2, . . . ∈ (2I)ω is i0 ∪ f(ε), i1 ∪ f(i0), i2 ∪ f(i0 · i1),
The synthesis problem for ψ is to return a finite-state transducer that realizes it (or an
answer that ψ is not realizable).

While model-checking theory has led to industrial development and use of formal-
verification tools, the integration of synthesis in the industry is slow. This has to do
with theoretical limitations, like the complexity of the problem (the synthesis problem
for linear temporal logic (LTL) is 2EXPTIME-complete [21]), methodological reasons
(the traditional solutions to the synthesis problem require the determinization of au-
tomata on infinite words [23] and the solution of parity games [15]), and practical
reasons: the difficulty of writing complete specifications and environment assumptions,
the lack of satisfactory compositional synthesis algorithms, and suboptimal results (cur-
rent algorithms produce systems that satisfy the specification, but may be larger or less
well-structured than systems constructed manually, and may satisfy the specification in
a peculiar way).

In the last decade there has been a significant advances in the development of prac-
tical algorithms for synthesis. In the theoretical fronts, researchers have suggested LTL
synthesis algorithms that circumvent determinization and parity games [17], algorithms
for fragments of LTL that can be implemented symbolically [20], and algorithms that
reduce LTL synthesis to the solution of safety games [6]. These algorithms have been
implemented [7,13,14,20], and they also support basic compositional synthesis [7,16].
Synthesis tools that are based on them give encouraging recent results (c.f., synthesis
of an arbiter for RAM’s on-chip AMBA advanced high-performance bus from tem-
poral specifications [9], an electronic voting machine [5], and more). Work has also
been done on generating environment assumptions to reduce the specification burden
for synthesis [18].

In this paper we describe a new approach for solving LTL synthesis. Consider an LTL
formula ψ. Like earlier approaches, our main goal is to circumvent the determinization
of the automaton for ψ and the solution of parity games. Unlike earlier approaches, our
algorithm is based on reducing the synthesis problem to a solution of a reachability game,
played between the system and the environment on a graph obtained by combining the
subset constructions of the automata forψand¬ψ. Our algorithm is a heuristic – the goals
of the system and the environment in the reachability game are not dual, and it may be
that no player can force the opponent to its target states. Even in that case, the information
obtained from the game enables us to restrict standard synthesis algorithms to a subset of

Synthesis with Clairvoyance 7

the game, which is often much smaller. In addition, as we elaborate below, our algorithm
involves theoretical issues at the heart of the synthesis problem that we believe should get
more attention. In particular, we study synthesis with clairvoyance (look-ahead), which
is strongly related to the need to work with deterministic automata [11,12].

Let us now explain the idea behind our algorithm. Recall that satisfiability of an LTL
formula ψ only guarantees that there is a collaborative input sequence x ∈ (2I)ω with
which the system can interact and generate an output sequence y ∈ (2O)ω such that
the composition of x and y into a computation in (2I∪O)ω satisfies ψ. On the other
hand, in realizability, the system should have a strategy that satisfies the specification
with respect to all possible environments. Between the satisfiability and the realizabil-
ity problems, one can consider universal satisfiability, where for every input sequence
x ∈ (2I)ω, there is an output sequence y ∈ (2O)ω such that the composition of x
and y satisfies ψ. Clearly, not all satisfiable specifications are universally satisfiable.
Also, it is not hard to see that while universal satisfaction is a necessary condition for
realizability, it is not a sufficient condition. A good way to understand the difference
between realizability and universal satisfiability is to consider realizability with look-
ahead – a notion that generalizes both of them. In realizability with look-ahead k, for
k ≥ 0, we also seek a strategy for the system. Here, however, the system generates the
output at position j only after seeing the input in all positions up to j + k. It is easy to
see that realizability coincides with realizability with look-ahead 0, whereas universal
satisfiability coincides with realizability with look-ahead ∞.

Look-ahead helps the system in two ways. First, when the ability to satisfy the speci-
fication depends on information from the future, the look-ahead reveals the future. Sec-
ond, when different futures with the same prefix require different outputs, look-ahead
postpones the need to commit to the same output for both futures. One may wonder if
these two ways are not two different interpretation of the same extra burden that realiz-
ability poses on universal satisfiability, and indeed this is the case. In fact, this is exactly
the same burden that requires us to determinize the specification automaton in the pro-
cess of solving the realizability problem: different input sequences that share the same
prefix may need to follow different runs of the nondeterministic automaton, and the run
may differ already in the joint prefix. A look-ahead enables us to follow different runs
in the joint prefix, as long as the difference between the sequences is “in the range of
visibility” of the strategy. 2

With all this in mind, our algorithm works as follows. First, we try our luck and check
whether ψ is universally satisfiable. If it is not, then clearly ψ is also non-realizable and
we are done. If it is, then we again try our luck and check whether ¬ψ is strongly satisfi-
able by the environment. If it is not, then again we are done, as we can conclude that ¬ψ
is not realizable by the environment, making ψ realizable by the system, and in fact it is
easy to find a transducer for it – the transducer can ignore the input and just generates
the output that witnesses the fact ¬ψ is not universally satisfiable by the environment.
Note that checking universal satisfaction is much simpler than checking realizability,
not just from a theoretical point of view (the problem is EXPSPACE-complete [24]),
but also in practice – universal satisfaction amounts to checking universality of a non-

2 This is similar to the link between online/offline algorithms and deterministic/nondeterministic
automata [2].

8 O. Kupferman, D. Sadigh, and S.A. Seshia

deterministic Büchi word automaton. Our experiments show that we may actually be
lucky quite often.

Our algorithm becomes more interesting when both ψ and ¬ψ are universally satis-
fiable. Then, we know that with an infinite look-ahead, both the system and the envi-
ronment can satisfy their dual goals, and it is only the nature of the interaction, which
requires both of them to proceed on-line, that makes only one of ψ and ¬ψ realizable.3

Consider a prefix w ∈ (2I∪O)∗ of a computation. We can say that the system is hopeful
after w if ψ stays universally satisfiable even when the interaction is restricted to start
with w. Note that in the definition of universal satisfaction, the outputs are existentially
quantified. Thus, fixing the outputs in w may indeed prevent ψ from being universally
satisfiable. Dually, the environment is hopeful after w if ¬ψ stays universally satisfi-
able. Our algorithm checks whether the system has a strategy to force the environment
to a prefix of a computation after which only the system is hopeful, and dually for the
environment. In the first case, we can conclude that ψ is realizable, and we also get a
transducer for it. In the second, we know that ¬ψ is realizable by the environment. The
good news is that the classification of prefixes can be reduced to a sequence of checks
for universal satisfaction, and is needed only for prefixes the lead to different states in
the subset construction of the automata for ψ and ¬ψ, with no determinization needed.
Also, as noted above, in case neither the system nor the environment have a strategy
to make the opponent hopeless, we can restrict traditional synthesis algorithms to take
into an account the need of the system and the environment to stay in a hopeful set of
states. As our examples show, our algorithm often terminates with a definite answer,
and it may also leads to a significant reduction in the state space. In Section 6, we also
point to other advantages of our algorithm.

Finally, we study synthesis with look-ahead and describe an algorithm for solving it.
A solution for the problem is described already in [12] in the context of sequential cal-
culus, Here, we adjust the solution to the modern setting of LTL and parity games, and
relate it to our heuristic. Beyond the theoretical interest in realizability with look-ahead
as a notion between universal satisfiabaility and realizability, look-ahead is interesting
also from a practical point of view. As we demonstrate in the paper (see also [3,11]),
look-ahead can make the difference between a specification being realizable and not
being realizable. Since in practice we often do have a look-ahead (say, when the envi-
ronment buffers its actions), it makes sense to use it.

2 Preliminaries

2.1 Satisfiability, Universal Satisfiability, and Realizability

Let I and O be finite sets of input and output signals, respectively. For an input se-
quence x = i0, i1, . . . ∈ (2I)ω and an output sequence y = o0, o1, . . . ∈ (2O)ω, the
computation x⊕ y is the interleaved sequence i0 ∪ o0, i1 ∪ o1, . . . ∈ (2I∪O)ω .

Consider an LTL formula ψ over I∪O. We consider three levels of satisfaction of ψ.

– The formula ψ is satisfiable if there is a computation that satisfies ψ.

3 An orthogonal research direction is to study the cases in which this happens, and the setting in
which a bounded lookahead is sufficient. As shown in [11], such problems are decidable.

Synthesis with Clairvoyance 9

– The formula ψ is universally satisfiable if for every input sequence x ∈ (2I)ω,
there is an output sequence y ∈ (2O)ω such that x⊕ y satisfies ψ.

– The formula ψ is realizable if there is a strategy f : (2I)∗ → 2O such that for
every input sequence x = i0, i1, i2, . . . ∈ (2I)ω, the computation of f on x, that is
i0 ∪ f(ε), i1 ∪ f(i0), i2 ∪ f(i0 · i1), . . . satisfies ψ.

It is not hard to see that realizability implies universal satisfiability, which implies sat-
isfiability, but not the other way around. For example, let I = {q} and O = {p}. It is
easy to see that the formula Gq is satisfiable but not universally satisfiable. Also, the
formula G(p ↔ q) is universally satisfiable but not realizable. Indeed, if, by way of
contradiction, f is a strategy that realizes it, then an input sequence x that starts with q
if f(ε) = ∅ and starts with {∅} if f(ε) = {p} is such that the computation of f on x
does not satisfy p↔ q, and hence does not satisfy G(p↔ q).

We note that in our definition of realizability, we did not require the strategy f to be
finite state. Since LTL formulas induce regular languages, adding such a requirement
would result in an equivalent definition [22]. Formally, a strategy f : (2I)∗ → 2O is
finite state if for every o ∈ 2O, the language f−1(o), which is a subset of (2I)∗, is
regular. Equivalently, f is finite state if it is induced by a finite-state transducer – a
deterministic automaton over the alphabet 2I in which each state is labeled by a letter
in 2O. Then, given a sequence w ∈ (2I)∗, the strategy f induced by the transducer is
such that f(w) is the label of the state that the transducer visits after reading w.

2.2 Automata on Infinite Words

A specification over I ∪ O can be viewed as a language over the alphabet 2I∪O. The
decision procedures for the three levels of satisfaction discussed above follow this view,
and are based on automata on infinite words.

A nondeterministic automaton is a tuple A = 〈Σ,Q,Q0, δ, α〉, where Σ is a finite
nonempty alphabet, Q is a finite nonempty set of states, Q0 ⊆ Q is a nonempty set of
initial states, δ : Q×Σ → 2Q is a transition function, and α is an acceptance condition.
The automaton A is deterministic if |Q0| = 1 and |δ(q, σ)| ≤ 1 for all states q ∈ Q and
symbols σ ∈ Σ.

A run r of A on an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite sequence
q0, q1, . . . of states such that q0 ∈ Q0, and for all i ≥ 0, we have qi+1 ∈ δ(qi, σi+1). The
acceptance condition α determines which runs are accepting. In the Büchi acceptance
condition, α ⊆ Q, and a run r is accepting if it visits some state in α infinitely often.
Formally, let inf (r) = {q : qi = q for infinitely many i’s }. Then, r is accepting iff
inf (r)∩α �= ∅. A wordw is accepted by an automaton A if there is an accepting run of
A on w. The language of A, denoted L(A), is the set of words that A accepts. We say
that A is empty if L(A) = ∅ and that A is universal if L(A) = Σω. A pre-automaton is
an automaton without an acceptance condition. We use NBW and DBW to abbreviate
nondeterministic and deterministic Büchi automata, respectively.

We are going to mention also the co-Büchi and the parity acceptance conditions.
The condition co-Büchi is dual to Büchi, thus a run is accepting if it visits α only
finitely often. The parity is more complicated and for our purposes here it is enough to
note that determistic parity automata (DPWs) are sufficiently expressive to recognize

10 O. Kupferman, D. Sadigh, and S.A. Seshia

all the languages recognized by nondeterministic Büchi automata. Thus, NBWs can be
translated to DPWs [19,23].

Theorem 1. [25] For every LTL formula ψ, there is an NBW Aψ with 2O(|ψ|) states
such that L(Aψ) = {w : w |= ψ}.

2.3 Traditional Decision Procedures

In this section we briefly review the traditional algorithms for solving satisfiability,
universal satisfiability, and realizability.

Deciding satisfiability is PSPACE-complete: given ψ, one can follow Theorem 1 and
constructs the NBW Aψ. Clearly, ψ is satisfiable iff L(Aψ) is not empty. Since the size
of Aψ is exponential in the length of ψ and checking its nonemptiness can be done
on-the-fly in NLOGSPACE, the PSPACE complexity follows.

Deciding universal satisfiability is more complicated and is EXPSPACE-complete:
Starting with Aψ, we construct an NBW A∃O

ψ , obtained from Aψ by taking its projec-
tion on I . That is, if A = 〈2I∪O, Q,Q0, δ, α〉, then A∃O

ψ = 〈2I , Q,Q0, δ
∃O, α〉, where

for a state q ∈ Q and input i ∈ 2I , we have that δ∃O(q, i) = {s : ∃o ∈ 2O such that s =
δ(q, i ∪ o)}. It is not hard to see that a word x ∈ (2I)ω is accepted by A∃O

ψ iff there
is a word y ∈ (2O)ω such that x ⊕ y is accepted by A. Hence, A∃O

ψ is universal iff
ψ is strongly satisfiable. Checking the universality of A∃O

ψ can be done by checking
the emptiness of its complement. Since the size of Aψ, and hence also of A∃O

ψ is ex-
ponential in the length of ψ, complementation involves an exponential blow-up, and
emptiness can be checked in NLOGSPACE, the EXPSPACE complexity follows.

Finally, deciding realizability is even more complicated, and is 2EXPTIME-complete.
The traditional algorithm determinizes Aψ, and transforms the obtained DPW into a
two-player game between the system and the environment. Formally, let Dψ = 〈2I∪O,
Q, q0, δ, α〉 be the DPW for ψ. Then, the game is Gψ = 〈V,E〉, where the set of ver-
tices V = Vsys∪Venv is such that Vsys = Q and Venv ⊆ 2Q. For S ∈ 2Q, we have that
S ∈ Venv iff there is q ∈ Q and o ∈ 2O such that S = δ∃I(q, o), in which case E(q, S).
Also, E(S, q′) iff q′ ∈ S. Deciding the realizability problem then amounts to deciding
the winner in the game Gψ with winning objective α. Intuitively, each transition of Dψ
is partitioned in the gameGψ into two transitions: consider a vertex q ∈ Vsys. First, the
system chooses an output o ∈ 2O, and the game moves to the vertex δ∃I(q, o) ∈ Venv .
Then, the environment chooses an input i ∈ 2I and the game continues to the state in
δ∃I(q, o) that i leads to, namely to δ(q, i ∪ o) ∈ Vsys.

It is sometimes convenient to refine Gψ to include more information, which enables
a labeling of the edges by the actions taken by the players. Thus, hereE ⊆ (Vsys×2O×
Venv) ∪ (Venv × 2I × Vsys). For that, we define, Vsys = Q and Venv ⊆ Q× 2O × 2Q

is such that 〈q, o, S〉 ∈ Venv iff S = δ∃I(q, o). Then, we also have E(q, o, 〈q, o, S〉). In
addition, for all vertices 〈q, o, S〉 ∈ Venv and q′ ∈ Vsys, we have that E(〈q, o, S〉, i, q′)
iff q′ = δ(q, i ∪ o). Note that q′ ∈ S.

The system and the environment are dual, in the sense that we can view the setting as
one in which the environment is trying to satisfy ¬ψ when it interacts with all systems.
Thus, the roles of the system and the environment may be switched, and we can talk
about a formula ψ being universally satisfied by the environment, meaning that for

Synthesis with Clairvoyance 11

every output sequence y ∈ (2O)ω, there is an input sequence x ∈ (2I)ω such that x⊕ y
satisfies ψ. We can also talk about ψ being realizable by the environment, meaning
that there is a finite-state strategy g : (2O)∗ → 2I such that for every output sequence
y = o0, o1, o2, . . . ∈ (2O)ω , the computation of g on y, that is o0 ∪ g(o0), o1 ∪ g(i0 ·
o1), o2 ∪ g(o0 · o1 · o2), . . . satisfies ψ. Note that in both types of realizability (by
the system and by the environment), the system moves first. Thus, the settings are not
completely dual. For universal satisfiability, the identity of the player that moves first is
irrelevant, and the definitions are completely dual.4 From determinancy of games, we
know that either ψ is realizable by the system or ¬ψ is realizable by the environment.

3 Using Universal Satisfiability

In this section we describe the first steps in our methodology for using universal sat-
isfiability in the process of checking realizability. We also point to realizability with
look-ahead as a notion between universal satisfiability and realizability.

Given a property ψ over I and O, we proceed as follows.

(1) Check universal satisfiability of ψ.
(1.1) If the answer is negative, we are done. Indeed, if ψ is not universally satisfi-

able, then clearly ψ is also not realizable.
(1.2) If the answer is positive, proceed to (2).

(2) Check universal satisfiability of ¬ψ by the environment.
(2.1) If the answer is negative, we are done. Indeed, if ¬ψ is not universally sat-

isfiable by the environment, then clearly ¬ψ is also not realizable by the envi-
ronment, implying that ψ is realizable by the system. Moreover, a transducer
for ψ can simply generate the output sequence y ∈ (2O)ω for which for all
x ∈ (2I)ω we have that x⊕ y |= ψ.

(2.2) If the answer is positive, proceed to (3).
(3) This is the interesting case: both ψ and ¬ψ are universally satisfiable. Note that

while it cannot be that both ψ and ¬ψ are realizable, they can both be universally
satisfiable. When this happens, we know that one of the players, the system or the
environment, cannot arrange the responses that work for the universal satisfiability
in the form of the strategy that is needed for realizablity. For example, consider the
formula ψ = G(p ↔ q), with I = {q} and O = {p}. Note that ¬ψ = F (¬(p ↔
q)). While both ψ and ¬ψ are universally satisfiable, only ¬ψ is realizable by the
environment.

The example of a robotic vehicle controller from [18], demonstrates how our heuristic
detects that the system is not realizable when sufficient assumptions are not provided.
The example of the robotic vehicle controller aims to synthesize a discrete planner that
allows an autonomous robot to move in a rectangular grid, while avoiding obstacles.
The obstacles are put and cleared by the environment at arbitrary times and squares. In
this example, the specification ψ is of the form A → G, where A is a conjunction of

4 The cleanest way to handle this lack of duality is to parameterize the synthesis problem with
a ”who moves first” flag. We decided to keep the setting simpler and let the system move first
in both settings.

12 O. Kupferman, D. Sadigh, and S.A. Seshia

assumptions on the environment, and G is a conjunction of guarnatees. The guarantees
require the car to start at the initial square, and in each step to move to an adjacent
square or to stay in the current one. The car cannot move to an occupied square, and
it eventually have to reach the destination square. The assumptions on the environment
require that there are no obstacles at the initial and destination squares. With this weak
assumption, ψ is not universally satisfied and our heuristic terminates at Step (1.1). In
order to make the specification realizble, we need to add stronger assumptions to A.
Adding the assumption that “ all the squares must be clear of obstacles infinitely often”
resolves the problem, and makes ψ realizable. Here too, out heuristic is helpful, as with
the stronger assumption we get that ¬ψ is not universally satisfied by the environment,
thus our heuristic terminates at Step (1.2).

Before we proceed to describe how our algorithm continues in Step (3), let us dis-
cuss the situation in more detail. Consider again the formula ψ = G(p ↔ q). As noted
above, ψ is not realizable. Intuitively, once the system generates an output, the envi-
ronment can generate an input that does not agree with the polarity of the output, thus
violating the specification. But what if the system can generate its output only after
seeing the next input? Then, the specification is realizable. In general, the difference
between universal satisfiability and realizability is the fact that in universal satisfiability
the system knows the whole sequence of inputs before generating the output, whereas
in realizability, the system has to react online and generate the next output without
knowing the inputs yet to come. Between these two extreme cases, we can talk about
realizability with look-ahead, where the system has to generate the next output after
seeing a prefix of the inputs yet to arrive.

Definition 1. [realizable with look-ahead] An LTL formula ψ over I ∪O is realizable
with look-ahead k (k-realizable, for short), if there is a strategy f : (2I)≥k → 2O such
that for every input sequence w = i0, i1, i2, . . . ∈ (2I)ω, the computation of f on w,
that is i0 ∪ f(i0, i1, . . . , ik−1), i1 ∪ f(i0, i1, . . . , ik), i2 ∪ f(i0, i1, . . . , ik+1), . . . , ij ∪
f(i0, i1, . . . , ik+j−1), . . . satisfies ψ.

As explained in Section 1, both universal satisfiability and realizability are a special
cases of k-realizability; the first with k = ∞ and the second with k = 0. Also, re-
alizability with look-ahead is interesting also in practice, as it corresponds to realistic
settings and can make specifications realizable [11,12].

4 When Both ψ and ¬ψ Are Universally Satisfiable

In this section we continue the description of our algorithm, namely what to do when
we get to Step (3). Let Aψ = 〈2I∪O, S, S0, ρ, α〉 and A¬ψ = 〈2I∪O, S′, S′

0, ρ
′, α′〉 be

NBWs for ψ and ¬ψ, respectively. Let Uψ be the pre-automaton obtained by applying
the subset construction to Aψ and A¬ψ. Thus, Uψ = 〈2I∪O, 2S × 2S

′
, 〈S0, S

′
0〉, δ〉,

where for all 〈P, P ′〉 ∈ 2S × 2S
′

and σ ∈ 2I∪O, we have that δ(〈P, P ′〉, σ) =
〈ρ(P, σ), ρ′(P ′, σ)〉. For a state 〈P, P ′〉 of Uψ, letL(AP

ψ) andL(AP
¬ψ) be the languages

of Aψ and A¬ψ with initial sets P and P ′, respectively. We say that a set P ∈ 2S is
system hopeful (sys-hopeful, for short) if for all x ∈ (2I)ω there is y ∈ (2O)ω such that
x ⊕ y ∈ L(AP

ψ). We say that a set P ′ ∈ 2S
′

is environment hopeful (env-hopeful, for

Synthesis with Clairvoyance 13

short) if for all y ∈ (2O)ω there is x ∈ (2I)ω such that x⊕ y ∈ L(AP ′
¬ψ). Thus, system

hopefulness coincides with universal satisfaction, except that instead of talking about
satisfaction of an LTL formula we talk about the membership in the language of AP

ψ .

Dually, environment hopefulness refer to membership in AP ′
¬ψ.

Consider a state 〈P, P ′〉 ∈ 2S × 2S
′

of Uψ. It is possible to decide in space expo-
nential in the length of ψ whether P is system hopeful and whether P ′ is environment
hopeful. Indeed, the check is similar to the check for universal satisfaction described in
Section 2. For the case of system hopefulness, we project AP

ψ on 2I and check that the

obtained NBW is universal. For environment hopefulness we do the same, with AP ′
¬ψ

and a projection on 2O.

Remark 1. In case we start with a deterministic automaton Dψ for the specification, we
do not have to apply the subset construction, and we can work directly with Dψ. Then,
the notion of system and environment hopefulness applies to single states, and checking
whether a state s is env-hopeful is done by dualizing Dψ , thus getting a deterministic
co-Büchi automaton for the negation of ψ. We can then project the co-Büchi automaton
existentially on 2O, and check whether the result is universal (see Example 1).

We can now describe the continuation of the algorithm:

(3) Consider the game induced by the pre-automaton Uψ.
(3.1) If the system has a strategy to reach a state 〈P, P ′〉 such that P is sys-hopeful and

P ′ is not env-hopeful, then we are done. Indeed, ψ is realizable, and we can also
have a transducer for it.

(3.2) If the environment has a strategy to reach a state 〈P, P ′〉 such that P ′ is env-
hopeful and P is not sys-hopeful, then we are done. Indeed, in a manner dual to the
one above, ¬ψ is realizable by the environment.

(3.3) If we got here, both the system and the environment have strategies to stay forever
in the region of states that are both sys-hopeful and env-hopeful. At this point we
give up and turn to solve the realizability problem using one of the traditional al-
gorithms. The information gathered during our algorithm is still useful and enables
us to restrict the realizability game to states in the region of hopeful states (all the
other states are replaced by two states – one is winning for the system and one is
winning for the environment).

We conclude the description of the algorithm with the following theorem.

Theorem 2. Consider an LTL specification ψ over I ∪O.

1. If the algorithm reaches Step (3), then all the states 〈P, P ′〉 that are reachable in
Uψ are such that at least one of the sets P and P ′ is hopeful.

2. If the algorithm terminates in Steps (2.1) or (3.1), then ψ is realizable and the
checks done by the algorithm induce a transducer for the system that satisfies ψ.

3. If the algorithm terminates in Steps (1.1) or (3.2), then ψ is not realizable and the
check done induce a transducer for the environment that satisfies ¬ψ.

Proof: We start with the first point. Consider a state 〈P, P ′〉 that is reachable in Uψ.
Let w be a word that leads to 〈P, P ′〉. Consider now the parity game that corresponds to

14 O. Kupferman, D. Sadigh, and S.A. Seshia

the realizability problem for ψ and the vertex vw that the game reaches after the system
and the environment proceeds according to w. Since parity games are determined, vw
is a winning vertex for either the system (in which case P must be hopeful) or the
environment (in which case P ′ must be hopeful).

Now, if the algorithm terminates Step (2.1), then ψ is realizable as a transducer for it
can simply generate the output sequence y ∈ (2O)ω for which for all x ∈ (2I)ω we have
that x⊕ y |= ψ; the fact ¬ψ is not universally realizable by the environment guarantees
that such a sequence y exists, and we know how to find it: this is the sequence that
witnesses the nonemptiness of the complement of A∃I

¬ψ.
Finally, when the algorithm terminates in Step (3.2), then ψ is realizable as a trans-

ducer for it can start with the strategy that reaches 〈P, P ′〉 such that P is sys-hopeful
and P ′ is not env-hopeful. It is guaranteed that when we apply Steps (1+2) of the algo-
rithm with AP

ψ instead of ψ and AP ′
¬ψ instead of ¬ψ, we would end up end up in Step

(2.1), thus once generating the prefix that leads to 〈P, P ′〉, the transducer can continue
with a fixed output sequence, as described above. The case ψ is not realizable is dual.

We now demonstrate our algorithm with three examples. In all of them, we have for
I = {q} and O = {p}.

Example 1. We start with an example in which the NBW for the specification is deter-
ministic. Let ψ = G(p ↔ Fq). Note that ψ is equivalent to G(p → Fq) ∧ G(¬p →
G¬q). The specification is universally satisfiable: given a sequence x ∈ (q,¬q)ω , it
is not hard to see that the sequence y ∈ (p,¬p)ω in which p holds in position j iff q
holds in a position grater than j is such that x ⊕ y |= ψ. Consider the negation of the
specification, that is ¬ψ = F (p ∧ G¬q) ∨ F (¬p ∧ Fq). It is not hard to see that ¬ψ
is universally satisfiable by the environment. Indeed, given a sequence y ∈ (p,¬p)ω,
a sequence x ∈ (q,¬q)ω in which q holds exactly when p does not hold, is such that
x⊕ y |= ¬ψ.

On the left of Figure 1 below we describe a DBW Dψ for ψ. Since Dψ is determinis-
tic, we do not have to apply the subset construction on it. On the right, we describe the
two projections of Dψ on I and on O.

Note that in D∃O
ψ , only s0 is universal (the other states are not universal since, for

example, qω is not accepted from them). Thus, only s0 is sys-hopeful in Dψ. In order to

Fig. 1. A DBW Dψ for ψ = G(p ↔ Fq) (left), and its projections D∃O
ψ and D∃I

¬ψ on I (middle)
and O (right), respectively

Synthesis with Clairvoyance 15

Fig. 2. The game induced by Dψ

find the env-hopeful states we consider the co-Büchi automaton D∃I
¬ψ. Here, all states

are universal. Indeed, s3 is an accepting sink, s1 can get with both p and ¬p to s3 in
one transition, s2 can stay in s2 forever with pω, and with all other words it can reach
s3, and finally, s0 can reach s2 and s1 with p and ¬p, respectively. It follows that all the
states in Dψ are env-hopeful.

The game induced by Dψ appears in Figure 2. The system states are ovals (and in
them, the system chooses between p and ¬p), and the environment states are rectangles
(the environment chooses q or ¬q). It is not hard to see that the environment has a
strategy to force the system to a state that is not sys-hopeful while staying within env-
hopeful states. Thus, we can conclude that ψ is not realizable.

Example 2. We now consider a case where Aψ is nondeterministic, thus we proceed
with NBWs for both ψ and ¬ψ. Consider the specification ψ = (Gp ∧ Fq) ∨ (G¬p ∧
F¬q). Thus, either the system always generates p and the environment generates q
eventually, or the system always generates ¬p, and the environment generates ¬q even-
tually. Note that ¬ψ = (Fp∧ F¬p)∨ (G¬q ∧Fp) ∨ (Gq ∧F¬p). It is not hard to see
that ψ is universally satisfiable by the system and ¬ψ is universally satisfiable by the
environment.

In Figure 3, we describe the NBWs Aψ (on the left, a union of two components) and
A¬ψ (on the right, a union of three components).

We now check the system and environment hopefulness of sets that are reachable in
the subset construction of the two NBWs. If we get to a set that is not hopeful, there
is no need to continue the construction from it. In Figure 4 we describe the obtained
deterministic pre-automata. In the figure, we indicate by dashed lines that the set is not
hopeful. For example, the set {s0} is not sys-hopeful since there is no output sequence
y ∈ (p,¬p)ω such that x ⊕ y is accepted from A{s0}

ψ for x = (¬q)ω . Similarly, the set

Fig. 3. The NBWs Aψ (left) and A¬ψ (right)

16 O. Kupferman, D. Sadigh, and S.A. Seshia

Fig. 4. The pre-automata obtained by applying the subset construction toAψ (left) andA¬ψ (right)

Fig. 5. The game corresponding to Uψ

{t0, t5} is not env-hopeful since there is no input sequence x ∈ (q,¬q)ω such that x⊕y
is accepted from A{t0,t5}

¬ψ for y = (¬q)ω .
In Figure 5 we describe the game corresponding to Uψ, obtained by combin-

ing the two pre-automata. As indicated in the figure, the states ({s1}, {t2, t6}) and
({s3}, {t0, t5}) are winning states for the system. Indeed, {s1} is sys-hopeful whereas
{t2, t6} is not env-hopeful, and likewise, {s3} is sys-hopeful whereas {t0, t5} is not
env-hopeful. Dually, the states ({s0}, {t1, t6}) and ({s2}, {t3, t5}) are winning states
for the environment. It is not hard to see that the environment has a strategy to reach its
winning states, thus we conclude that ψ is not realizable.

Example 3. In this example we demonstrate a case in which our algorithm does not
reach a definite answer. Consider the specification ψ = F (p ↔ q). Again, both ψ and
¬ψ are universally satisfiable, so we get to Step (3). The deterministic automatonDψ of
ψ appears in Figure 6. It is easy to see that both s0 and s1 are system hopeful, whereas
only s0 is environment hopeful. However, the system does not have a strategy to force
the game induced by Dψ to s1: if the system proceeds from s0 with p, the environment
will respond with ¬q, and if the system proceeds with ¬p, the environment will respond

Synthesis with Clairvoyance 17

Fig. 6. A DBW for ψ = F (p↔ q) and the game corresponding to it

with q. Also, since both s0 and s1 are system hopeful, the environment does not have a
strategy to force the game into states that are not system hopeful. So, we have to solve
the realizability problem. We can use, however, the fact that game would get stuck in
s0, which would not satisfy the Büchi condition, thus ψ is not realizable.

5 LTL Realizability with Look-Ahead

In Section 3, we defined LTL realizability with look-ahead. This notion is not funda-
mentally new, and the problem of k-realizability was studied already in 1972, in the
context of sequential calculus [12]. Here, we adjust the solution to the modern set-
ting of LTL and DPWs, and describe how our algorithm can be adjusted to handle
k-realizability too.

Theorem 3. Consider an LTL formula ψ and an integer k ≥ 0. Let Ak
ψ be such that

L(Ak
ψ) = {x⊕ y : x⊕ yk ∈ L(Aψ)}, where yk is the suffix of y from position k.

– We can construct an NBW Ak
ψ as above with number of states exponential in |ψ|

and k.
– We can construct an DPW Ak

ψ as above with number of states doubly-exponential
in |ψ| and exponential in k.

– Applying synthesis algorithms with respect to Ak
ψ rather than Aψ solves the

k-realizability problem.

Proof: Let Aψ = 〈2I∪O, Q, δ, q0, α〉 be an NBW for ψ. We define Ak
ψ = 〈2I∪O, Q′,

ε, δ′, α′〉, where

– Q′ = (
⋃

0≤j<k(2
I)j) ∪ (Q × (2I)k). The first type of states is for accumulating

the vector of the last k − 1 inputs. The second type is to be used after we have
accumulated the first k inputs. Then, we follow the runs of Aψ , with the output
being combined with the input read k letters earlier.

– The transition function is defined as follows.
• For the first type of states, if 0 ≤ j < k − 1, we ignore the output component

of the letter read (intuitively, since we shift the output by k, the output in the
first k − 1 levels is not important) and only accumulate inputs in the vector.
Accordingly, δ′(〈i1, . . . , ij〉, i ∪ o) = {〈i1, ..., ij , i〉}.

• In the last level of states from the first type, we still ignore the output read but
get ready to start following the runs of Aψ. Accordingly, δ′(〈i1, . . . , ik−1〉, i∪
o) = Q0 × {〈i1, ..., ik−1, i〉}.

• Then, we continue to follow the runs ofAψ , where o is combined with the input
read k transitions earlier. Accordingly, δ′(〈q, i1, . . . , ik〉, i∪o) = δ(q, i1∪o)×
{〈i2, ..., ik, i〉}.

18 O. Kupferman, D. Sadigh, and S.A. Seshia

– α′ is obtained from α by replacing a set F ⊆ Q by the set F × (2I)k.

The construction of the DPW Ak
ψ is similar, starting from a DPW Aψ for the property.

Note that we could have also determinized the NBW described above, but the blow-up
in terms of I could then have been doubly exponential. Note that Ak

ψ proceeds accord-
ing to the input that was read k positions earlier, combined with the current output. This
captures the fact that in k-realizability, the output is combined with the input only after
knowing what the previous k inputs were. Accordingly, the game induced by the DPW
Ak
ψ solves the k-realizability problem.

Applying our algorithm in order to solve the k-realizability problem, we proceed with the
game obtained from the subset construction applied on the the NBWsAk

ψ andAk
¬ψ. Note

that in both automata, the O-component of a letters is combined with the I-component
of the letter read k positions earlier. All the other details of the algorithm are the same.

6 Discussion

We described a simple heuristic that replaces the parity game corresponding to LTL syn-
thesis with a game in which the system and the environment try to force each other into
hopeless states in the game. Our definition of hopeless is based on universal satisfaction
– the game-free variant of realizability, and is therefore easier to reason about.

Below we discuss some further advantages of our heuristic, and some directions
for future research. First, several challenges in the context of realizability are easier
to cope with using our approach. This includes compositional synthesis [16], mining
for assumptions [18], and testing for inherent vacuity in specifications [8]. In all these
problems, one can try to circumvent the need to work with parity games by using our
heuristic that use instead hopeless finite prefixes.

Our definition of hopeful states can be replaced by other definitions, leading to looser
(but even more efficient) or tighter (but more complex to achieve) heuristics. On the
loose side, one can work with the nondeterministic automaton (rather than the subset
construction on it). Under this definition, a prefix of a computation is hopeful if there is
a single state s in Aψ such that the prefix can lead to s and As

ψ is universally satisfiable.
Note that now, states that are not hopeful may still be reachable by hopeful prefixes, thus
the heuristic can be used in order to direct the subset construction to construct subsets
only when such a construction is needed. On the tighter side, one can replace universal
satisfaction by definitions that are game-based, but are easier to solve than parity.

Finally, in case our algorithm does not terminate with a definite answer, we suggested
to continue with traditional synthesis algorithms, with actions being restricted to these
that keep the system and the environment in their hopeful regions. We found this case
very interesting: both the system and the environment can stay hopeful forever, yet
only one of them can satisfy the acceptance condition of Aψ (the system) or A¬ψ (the
environment). We plan to study whether this special situation can be of help when we
solve the parity game on the restricted region.

References
1. Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Concurrent Program

Specifications. In: Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

Synthesis with Clairvoyance 19

2. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about Online Algorithms with Weighted
Automata. In: Proc. 20th SODA, pp. 835–844 (2009)

3. Breslauer, D.: On competitive on-line paging with lookahead. TCS 209(1–2), 365–375
(1998)

4. Dill, D.L.: Trace theory for automatic hierarchical verification of speed independent circuits.
MIT Press (1989)

5. Dworkin, L., Li, W., Seshia, S.A.: Automatic synthesis of a voting machine design (2010)
(Unpublished Manuscript)

6. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)

7. Filiot, E., Jin, N., Raskin, J.-F.: Compositional Algorithms for LTL Synthesis. In: Bouajjani,
A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127. Springer, Heidelberg
(2010)

8. Fisman, D., Kupferman, O., Sheinvald, S., Vardi, M.Y.: A Framework for Inherent Vacuity.
In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer, Heidelberg
(2009)

9. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB from formal specifi-
cation. CoRR abs/1001.2811 (2010)

10. Harel, D., Pnueli, A.: On the development of reactive systems. In: NATO Advanced Science
Institutes, vol. F-13, pp. 477–498. Springer (1985)

11. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infinite Games. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266. Springer, Heidelberg (2010)

12. Hosch, F., Landweber, L.: Finite delay solutions for sequential conditions. In: Proc. 1st
ICALP, pp. 45–60 (1972)

13. Jobstmann, B., Bloem, R.: Game-based and simulation-based improvements for LTL synthe-
sis. In: Proc. 3nd GDV (2006)

14. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A Tool for Property Synthesis.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer,
Heidelberg (2007)

15. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solv-
ing parity games. SIAM Journal on Computing 38(4), 1519–1532 (2008)

16. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless Compositional Synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

17. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–
540 (2005)

18. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Proc. 9th
MEMOCODE (July 2011)

19. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. In: Proc. 21st LICS, pp. 255–264 (2006)

20. Piterman, N., Pnueli, A., Saar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–
190 (1989)

22. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Mathematical So-
ciety (1972)

23. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327 (1988)
24. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with

applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)
25. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-

tion 115(1), 1–37 (1994)

	Synthesis with Clairvoyance
	Introduction
	Preliminaries
	Satisfiability, Universal Satisfiability, and Realizability
	Automata on Infinite Words
	Traditional Decision Procedures

	Using Universal Satisfiability
	When Both and Are Universally Satisfiable
	LTL Realizability with Look-Ahead
	Discussion
	References

