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Abstract Roles such as leading and following can emerge

naturally in human groups. However, in human-robot

teams, such roles are often predefined due to the diffi-

culty of scalably learning and adapting to them. In this

work, we enable a robot to efficiently learn how group

dynamics emerge and evolve in human teams and we

leverage this understanding to plan for influencing ac-

tions for autonomous robots that guide the team toward

achieving a common goal. We first develop an effective

and concise representation of group dynamics, such as

leading and following, by enforcing a graph structure

while learning the weights of the edges corresponding

to one-to-one relationships between the agents. We then

develop an optimization-based robot policy that lever-

ages this graph representation to attain an objective

by influencing a human team. We apply our framework

to two types of group dynamics, leading-following and

predator-prey, and show that our structured represen-

tation is scalable with different human team sizes and

also generalizable across different tasks. We also show

that robots that utilize this representation are able to

successfully influence a group to achieve various goals

compared to robots that do not have access to these

graph representations. 1

Keywords human-robot teaming · human modeling ·
multiagent systems

1 Introduction

Humans are capable of seamlessly interacting and col-

laborating with each other. They can easily form teams

M. Li, M. Kwon, and D. Sadigh
Computer Science Department, Stanford University, E-mail:
{mengxili,mnkwon, dorsa}@stanford.edu

1 Parts of this work has been published at Robotics: Science
and Systems (RSS) [47].

and decide if they should follow or lead to efficiently

complete a task as a group. This is apparent in sports

teams, human driving behavior, or simply having two

people move a table together. Similarly, humans and

robots are expected to seamlessly interact with each

other to achieve collaborative tasks. Examples include

collaborative manufacturing, search and rescue missions,

and in an implicit way, collaborating on roads shared

by autonomous and human-driven cars.

In these collaborative teamwork scenarios, an im-

portant challenge for robots is to understand and in-

teract with human agents seamlessly and even further

influence a human team to achieve a desired goal. For

instance, imagine a mixed human-robot search and res-

cue mission with no direct communication capabilities

similar to Fig. 1. When a quadcopter senses valuable in-

formation from the environment how should the quad-
copter direct the rest of its human teammates toward

the desired goal?

One common solution is to assign leading and fol-

lowing roles to the team a priori before starting the

search and rescue mission. Many current human-robot

interactions determine leader-follower roles beforehand

[29, 44, 55, 80, 84, 33, 72]. This include tasks that

require learning from demonstrations or preferences,

where the human is considered as the leader and the

robot is the follower [19, 3, 1, 87, 23, 62, 13, 68], or as-

sistive tasks where the robot teaches or assists human

users [70, 41, 57, 39, 51]. However, assigning leader-

ship roles a priori is not always feasible in dynamically

changing environments or long-term interactions.

There has also been significant prior work on how

we can construct intelligent robot policies that induce

desired behaviors from people [76, 35, 63, 64, 12, 85, 56].

However, all of these works optimize for robot policies

that influence only a single human in one-on-one inter-

actions. These works are able to successfully produce
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Fig. 1: A search and rescue example, where a team of

humans intend to rescue people from two islands shown

in green. The quadcopter collects more information and

determines that the team should head towards the is-

land on the right. It guides the human team toward

the island on the right using a graph representation

that models the human team. We estimate leading and

following relationships in human teams (denoted by the

arrows), and use this to create influential robot policies.

The black arrows represent intended human leading and

following behaviors whereas the grey arrows represent

updated leading and following behaviors after the in-

fluencing robot action.

influencing behaviors by keeping an estimate of the hu-

man’s state and optimize for actions based on the esti-

mation, which is often computationally intractable with

larger groups of humans.

Instead of keeping track of each individual’s state in

a team, we propose a more scalable method that esti-

mates the collective team’s state. Similar to individuals,

teams exhibit behavioral patterns and structures that

robots can use to create intelligent influencing policies.

One particular feature of human teams we will focus on

in this work is leading and following relationships.

Our key insight is that there exists an underly-

ing graphical structure encoding the larger and

more complex interactions between humans in

team settings.

In this paper, we develop a scalable approach to

extract meaningful latent structures in teams of hu-

mans that represent their leading and following behav-

iors. We extract an underlying graph, leader-follower

graph (LFG), to represent the global pattern of leader-

follower dynamics using information from local, pair-

wise leader-follower interactions that we learn using su-

pervised learning techniques. This structure provides a

concise and informative representation of the current

state of the team and can be used in planning. We

then develop novel strategies for robots who join the

human team to efficiently estimate the leader-follower

graph and further influence this structure to more effi-

ciently achieve the team’s goals. For instance, as shown

in Fig. 1, there is an underlying team structure between

the humans who are collaboratively navigating towards

the left goal. However, a robot capable of estimating

this underlying structure through the leader-follower

graph can follow strategies that collectively influence

the team to instead navigate the team towards the right

goal, which could lead to a more desirable outcome.

We demonstrate the generalizability of our approach

by applying our framework to a second type of group

dynamics: predator-prey relationships. We show that

we are able to successfully model predator-prey rela-

tionships using leader-follower graphs (LFGs). We also

demonstrate that a robot using this LFG model is able

to influence predator-prey dynamics.

Our contributions in this paper are as follows:

– Formalizing and learning a graphical structure that

captures complex relationships between members in

human teams.

– Developing optimization-based robot strategies that

leverage the graph representation to influence the

team towards a more efficient objective.

– Providing simulation experiments in a pursuit-evasion

game demonstrating the robot’s influencing strate-

gies to reverse a leader-follower relationship, dis-

tract a team, and lead a team towards an optimal

goal based on its learned leader-follower graph.

– Generalizing our framework to a predator-prey do-

main and showing that our framework can still suc-

cessfully model group dynamics, scalably deal with

different group sizes, and can be used to design in-

fluencing policies.

In the rest of this paper, we first discuss relevant work

on modeling teams, influencing teams, and ad hoc team-

work in Section 2. We then describe our formalism and

algorithm for learning graphical representations of hu-

man teams in the leader-follower domain (Sections 3-5)

followed by the predator-prey domain(Sections 6-8). Fi-

nally, we describe our experiments in the leader-follower

domain (Section 9) and the predator-prey domain (Sec-

tion 10) followed by a discussion of limitations and fu-

ture works.
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2 Related Work

2.1 Modeling Teams

Finding computationally efficient ways to model human

teams is an important part of this work. These models

can be used to design intelligent policies that allow an

agent to influence or coordinate with the team. We re-

view ways in which prior works have modeled groups of

agents.

Flocks and Swarms. Many works model flocks and

swarms inspired by animal flocking behavior [32, 22, 71,

81]. These models describe how groups reach consensus

in orientation when navigating a space. They generally

assume that all agents are homogenous and that they

follow the same, relatively simple, update rule. Impor-

tant components of this update rule include aligning

orientation with their neighbors, positional attraction

and repulsion towards neighbors, and some noise [32].

For example, Cristiani and Piccoli are able to replicate

many self-organized patterns found in nature by model-

ing long-range cohesion, short-range repulsion, and the

agents’ visual fields [22]. Rosenthal et al. show that all

agents are not equally susceptible to being influenced.

They show that individuals with relatively few strongly

connected neighbors are both more socially influential

and susceptible to being influenced [71]. While these

models are computationally efficient, they are too sim-

plistic to be able to capture social dynamics that occur

in human teams.

Attention and Graph Neural Networks. Recently,

graph neural networks that use attention have become

popular for modeling agent interactions [36, 52, 37,
40]. Attention is generally used to learn edge weights

between agents. Vertex Attention Interaction Network

(VAIN) uses attention to capture local structure by

allowing the network to determine which agents will

share information [36]. Li et al. uses self-attention to

find structure in a coordination graph and then uses

graph neural networks to integrate information among

all agents [52]. Jiang et al. uses multi-head dot product

attention to extract relations among neighboring agents

in order to increase agents’ receptive fields. Latent fea-

tures are then extracted from these enlarged receptive

fields to learn cooperative policies [40]. Compared to

our approach, attention-based methods generally have

more parameters and thus require more data to train.

However, using attention-based methods to model hu-

man teams could be promising future work.

Modeling Humans. While there are many works that

model multiagent systems, the extent to which these

models can generalize to groups of humans remains un-

derexplored. Many works in cognitive science, psychol-

ogy, and behavioral economics have created predictive

models of humans by modeling their biases and sub-

optimalities. For instance, Ordonez and Benson III in-

vestigated how humans make decisions under time con-

straints [66]. Simon developed the concept of bounded

rationality to reflect limited humans’ limited cognitive

resources [77]. Tversky and Kahneman developed Cu-

mulative Prospect Theory to capture human-decision

making under risk and uncertainty [83]. In robotics,

being able to successfully predict human behavior has

shown to improve performance on tasks such as assistive

robotics [51, 57, 39, 25], autonomous driving [74, 75,

6], collaborative games [61], and motion planning [88,

59]. The noisy rational choice model has been an ex-

tremely popular choice due to its simplicity [14, 13, 11,

27, 7]. Other models include the adoption of Cumula-

tive Prospect Theory for human-robot interaction [48],

models of human driving [34, 53], as well as learning-

based models [60, 67].

In addition to explicitly modeling human behav-

ior, robots have also been able to infer human pref-

erences through interactions using partially observable

Markov decision processes (POMDPs) which allow rea-

soning over uncertainty on the humans’ internal state

or intent [17, 24, 50, 58, 38, 75]. Human’s intent in-

ference has also been achieved through human-robot

cross-training [62] as well as various other approxima-

tions to POMDP solutions such as augmented MDPs,

belief space planning, approximating reachable belief

space, and decentralization [2, 45, 46, 65, 69, 73]. How-

ever, these methods usually focus on modeling a single

human agent and do not capture social dynamics that

occur among humans.

2.2 Influencing Teams

Given a model of a team, an important next question

is how a more informed agent can use this model to

coordinate with or influence the team.

Flocks and Swarms. Literature on influencing flocks

and swarms looks at how informed agents can guide the

group towards a preferred direction. This is similar to

some of our evaluation tasks where the robot agent at-

tempts to guide the human team towards a particular

goal. The homogeneity and simple nature of agents in

flocks and swarms allow for leader agents to implicitly

influence the group. More specifically, implicit leader-

ship algorithms allow a group of agents to reach con-

sensus where each agent can observe their neighbors’

states within a particular radius. As agents attempt to

align their orientation with their neighbors’, this em-

powers informed agents to lead [86, 31]. Prior work has
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also examined properties that make a swarm more sus-

ceptible to influence. Couzin et al. show that in groups

of animals, only a small proportion of informed agents

are required, and the larger the group, a smaller the

proportion of informed individuals are needed [21]. Ce-

likkanat et al. study the extent to which informed in-

dividuals can lead a flock by varying three factors: (1)

the weight of the direction of preference (2) the ratio

of informed individuals and (3) the size of the flock.

They find that a flock is easier to control when mod-

erate weight is put on the direction of preference (2)

larger flock sizes and (3) more agents attempt to align

their states with neighboring agents’ states [18]. It is

difficult to apply these findings to human teams due to

the simplicity of flock and swarm models.

Human-Swarm Interaction. There has also been con-

siderable work on how humans can influence flocks and

swarms. Tiwari et al. consider the problem of leader

placement when steering a large robot swarm [82]. Robots

can either be controlled by a human or behave ac-

cording to a swarm model. The authors consider which

robots are positionally best equipped to influence the

swarm (front, middle, or periphery). Kerman et al. and

Brown et al. also consider how humans can influence

swarms by controlling a subset of them [43, 16]. They

show that humans are able to lead the swarm to switch

from torus to flock formations and vice versa. Our work

tackles the reverse problem where a robot agent must

influence a team of humans.

2.3 Ad Hoc Teaming

An autonomous ad hoc agent must both model and

influence a team that it has never seen before [79].

The ad hoc setting is similar to ours in that we ex-

pect our robot agent to influence a human team that

it has never worked with before. Ad hoc teaming has

been studied in the multi-armed bandit setting where a

teacher needs to trade off between teaching a new learn-

ing agent and exploitation [78, 10]. Role assignment in

ad hoc teams have also been studied [15, 30]. Typi-

cally, an ad hoc agent needs to select a role such that it

maximizes the team’s utility. For instance, in Bowling

and McCracken’s work, teammates assign a role to the

agent and the agent’s job is to infer its role by simulat-

ing plays and selecting the one that is most similar to

current teammate behavior [15]. Liemhetcharat models

how well agents work together in ad hoc teams using a

graph; nodes represent agents, their value represent the

agent’s capabilities, and agent synergy is determined

by their capabilities and how far apart they are located

from other agents in the graph [54]. Liemhetcharat de-

scribes how to learn this graph based on observations

of team performance and then use this model to plan

for creating effective ad hoc teams. Barrett et al. intro-

duce model-based and model-free algorithms that al-

lows ad hoc agents to collaborate with a variety of dif-

ferent teammates [9]. The algorithms either learn mod-

els about prior teammates or policies on how to collab-

orate with prior teammates, and uses this knowledge

to interact with current teammates. Albrecht assumes

that agents can be characterized into a set of policies

drawn from some unknown distribution [4]. The author

uses a Bayesian approach where agents update their

posterior beliefs about types of other agents which can

then be used for planning. While many of these ad hoc

teaming works focus on modeling different types of po-

tential teammates, in this work, we focus on modeling

a specific type of latent group dynamics — leading and

following graphs — in order to enable a robot to inter-

act with an unknown team.

3 Formalism for Modeling Leading and

Following in Human Teams

Running Example: Pursuit-Evasion Game. We

define a multi-player pursuit-evasion game on a 2D plane

as our main running example. In this game, each pur-

suer is an agent in the set of agents I that can take

actions in the 2D space to navigate. There are a num-

ber of stationary evaders, which we refer to as goals.

The objective of the pursuers is to collaboratively cap-

ture the evaders (goals). Fig. 2 shows an example of a

game with three pursuers, shown in orange, and three

goals, shown in green. The action space of each agent is

identical, Ai = {move up, move down, move left, move

right, stay still}; the action spaces of all agents collec-

tively define the joint action space A. All pursuers must

jointly and implicitly agree on a goal to target, and a

goal will be captured when all pursuers collide with it

as shown in Fig. 2 (b).

Leaders and Followers. We define a set of goals g ∈
G, which abstracts the idea of the agents reaching a

set of states in order to fully optimize the joint reward

function. For instance, in a pursuit-evasion game, the

goals informally correspond to the evaders that need to

be captured by all the pursuers, i.e., all the agents (pur-

suers) need to reach a state corresponding to the goals

(evaders) being captured. A goal in G intuitively signi-

fies a way for the agents to coordinate strategies with

each other. For instance, in a pursuit-evasion game, the

agents should collaboratively plan on actions that cap-

ture the goals. To put this in the context of leading and
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Fig. 2: Pursuit-evasion game. (Left) we demonstrate a

pursuit-evasion game with three goals (green circles),

and three pursuers (orange circles). The pursuers must

jointly agree on moving toward a target. (Right) The

three pursuers move to g1 to capture it.

following, when agents capture a goal, the goal can be

thought of as being followed.

Each agent i ∈ I follows a goal or another agent,

which we refer to as a leader. Formally we let li ∈ G∪I,

where li is either an agent or a fixed goal g who is the

leader of agent i (agent i follows li). This is shown in

Fig. 3 (a), where agent 2 follows goal g1 (l2 = g1) and

agent 3 follows agent 2 (l3 = 2).

Leader-Follower Graph. The set of leaders and fol-

lowers form a directed leader-follower graph as shown in

Fig. 3 (a). Each node represents an agent i ∈ I or goal

g ∈ G. The directed edges represent leading-following

relationships, where there is an outgoing edge from a

follower to its leader. The weights on the edges repre-

sent a leadership score, which is the probability that

the tail node is the head node’s leader. For instance,

in Fig. 3 (a), w3,2 represents the probability that 2 is

3’s leader. The leader-follower graph is dynamic in that

agents can decide to change their leaders at any time.

We assume that there could be an implicit transitivity

in a leader-follower graph, i.e., if an agent i follows an

agent j, implicitly it could be following the agent j’s

believed ultimate goal.

Some patterns are not desirable in a leader-follower

graph. For instance, an agent would never follow it-

self, and we do not expect to observe cycling leading-

following behaviors (Fig. 3 b). Other patterns that are

likely include: chain patterns (Fig. 3 c) or patterns

with multiple teams where multiple agents directly fol-

low goals (Fig. 3 d). We describe how to construct a

leader-follower graph that is scalable with the number

of agents and avoids the undesirable patterns in Sec.

4.

Partial Observability. The leader of each agent, li, is

a latent variable. We assume that agents cannot directly

observe the leading and following dynamics of other

agents. Thus, constructing leader-follower graphs can

help robot teammates predict who will follow whom,

allowing them to strategically influence teammates to

adapt roles. We assume agents have full information

on the observations of themselves and all other agents.

(e.g. positions and velocities of agents).

4 Construction of a Leader-Follower Graph

In this section, we focus on constructing the leader-

follower graph that emerges in collaborative teams. We

will first focus on learning pairwise relationships be-

tween agents using a supervised learning approach. We

then generalize our dyadic scoring to multi-player set-

tings using graph theoretic algorithms. This combina-

tion of data-driven and graph-theoretic approaches al-

lows the leader-follower graph to efficiently scale up

with the number of agents. Our aim is to leverage this

leader-follower graph to enable robot teammates to pro-

duce helpful leading behaviors.

4.1 Pairwise Leadership Scores

We first focus on learning the probability of any agent

i following any goal or agent j ∈ G ∪ I. The pairwise

probabilities help us estimate the leadership score wi,j ,

i.e., the weight of the edge (i, j) in the leader-follower

graph.

We develop a general framework of estimating the

leadership scores using a supervised learning approach.

Consider a two-player setting where I = {i, j}, we col-

lect labeled data where agent i is asked to follow j, and

agent j is asked to optimize for the joint reward func-

tion assuming it is leading i, i.e., following a fixed goal

g in the pursuit-evasion game (li = j and lj = g). We

then train a LSTM network with a softmax layer to

predict each agent’s most likely leader.

Data Collection. We collect labeled human data by

asking participants to play a pursuit evasion game. We

recruited pairs of humans and randomly assigned lead-

ers li to them (i.e., another agent or a goal). Partici-

pants played the game in a web browser using their ar-

row keys and were asked to move toward their assigned

leader, li. In order to create a balanced dataset, we col-

lected data from all possible configurations of leaders

and followers in a two-player setting (the configurations

are shown in Fig. 7). We collected a total of 186 games.

Since human data is often noisy and difficult to col-

lect in large amounts; we further augmented our dataset

with synthetic data, where we had simulated humans

play the game. We simulated humans based on a po-

tential field path planner [8]. Agents at location q plan
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Fig. 3: (a) Leader-follower graph. Green islands are the goals that need to be captured. Orange circles are the

pursuers. (b) Cyclic leader-follower graph. We design policies that avoid such cyclic behaviors. (c) Chain behavior

in the leader-follower graph. (d) Multiple teams.

their path under the influence of an artificial poten-

tial field U(q), which is constructed to reflect the en-

vironment. Agents moved toward their leaders by fol-

lowing an attractive potential field. Other agents and

goals that are not their leaders are treated as obstacles

that emit a repulsive potential field. In our game set-

ting, the position of agent’s assigned leader li is given

an attractive potential field. The rest of the goals and

agents are expressed as repulsive potentials.

Potential Field for Simulated Human Planning.

We denote the set of attractions as A, and the set of

repulsive obstacles as R. The overall potential field is

a weighted sum of potential fields from all attractive

and repulsive obstacles. θi is the weight for attractive

potential field from i ∈ A, and θj is the weight for

repulsive potential field from j ∈ R.

U(q) =
∑
i∈A

θiU
i
att(q) +

∑
j∈R

θjU
j
rep(q) (1)

The optimal action a that an agent would take lies in

the direction of the potential field gradient.

a = −∇U(q) = −
∑
i∈A

θi∇U iatt(q)−
∑
j∈R

θj∇U jrep(q)

In our implementation, the attractive potential field

increases as the distance to goal becomes larger to help

the agent reach the goal. On the other hand, the repul-

sive potential field has a fixed effective range, within

which the potential field increases as the distance to the

obstacle decreases. The attractive and repulsive poten-

tial fields are constructed in the same way for all attrac-

tive and repulsive obstacles. Specifically, the attractive

potential field of attraction i, denoted as U iatt(q), is con-

structed as the square of the Euclidean distance ρi(q)

between agent at location q and attraction i at location

qi. In this way, the attraction increases as the distance

to goal becomes larger. ε is the hyper-parameter for con-

trolling how strong the attraction is and has consistent

value for all attractions.

ρi(q) = ‖q − qi‖
U iatt(q) = 1

2ερi(q)
2

−∇U iatt(q) = −ερi(q)(∇ρi(q))

The repulsive potential field U jrep(q) is used for obsta-

cle avoidance. It usually has a limited effective radius

since we do not want the obstacle to affect agents’ plan-

ning if they are far way from each other. Our choice

for U jrep(q) has a limited range γ0, where the value is

zero outside the range. Within distance γ0, the repul-

sive potential field increases as the agent approaches

the obstacle. Thus, to compute the repulsive potential

field to obstacle j at location q, we first identify the

minimum distance γj(q) between q and the obstacle j

as in Eq.(2). Coefficient η and range γ0 are the hyper-

parameters for controlling how conservative we want

our collision avoidance to be and is consistent for all

obstacles. Larger values of η and γ0 mean that we are

more conservative with collision avoidance and want the

agent to keep a larger distance to obstacles.

γj(q) = min
q′∈obsj

‖q − q′‖

U jrep(q) =

{
1
2η( 1

γj(q)
− 1

γ0
)2 γj(q) < γ0

0 γj(q) > γ0

∇U jrep(q) =

{
η( 1
γj(q)

− 1
γ0

)( 1
γj(q)2

)∇γ(q) γ(q)j < γ0

0 γj(q) > γ0

(2)

In our experiments, we find that our simulations are

good approximations of human behavior. The simple

nature of the task given to humans (i.e., move directly

toward your assigned leader li) is easily replicated in

simulation.

Training with a Scalable Network Architecture.

Our network architecture consists of two LSTM sub-

modules, one to predict player-player leader-follower
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Fig. 4: Scalable neural network architecture. This example predicts the probability of another agent j being agent

2’s leader, w2,j . There are three LSTM submodules used because there are two possible evaders and one possible

agent that could be agent 2’s leader. This architecture demonstrates how one can select P-P and P-E modules and

discover the leader-follower relationships in a more scalable and compositional manner.

relationships (P-P LSTM) and one to predict player-

evader relationships (P-E LSTM). We use a softmax

output layer with a cross-entropy loss function to get

a probability distribution over j and all goals g ∈ G of

being i’s leader. We take the leader (an agent or a goal)

with the highest probability and assign this as the lead-

ership score. The P-P and P-E submodules allow us to

scale training to a game of any number of players and

evaders as we can add or remove P-P and P-E submod-

ules depending on the number of players and evaders in

a game. An example of our scalable network architec-

ture is illustrated in Fig. 4.

Evaluating Pairwise Scores. Our network trained

on two-player simulated data successfully captured the

pairwise leading-following relationship (training accu-

racy: 80%, validation accuracy: 83%). We also experi-

mented with training with three-player simulated data

as well as a combination of two-player simulated and

human data (two-player mixed data) resulting in (train-

ing accuracy: 97%, validation accuracy: 75%).

Validation results are shown in Fig. 5. Our model

trained with mixed two-player data was first trained on

simulated data and then trained on human data. For

this reason, we have represented the mixed-data model

as a horizontal line in Fig. 5 demonstrating the final

validation accuracy.

4.2 Maximum Likelihood Leader-Follower Graph

To build a leader-follower graph in settings with more

than two players, we compute pairwise weights wi,j of

leader-follower relationships between all possible pairs

0 20e3 40e3 60e3
steps
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0.8
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cu
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2P human
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Fig. 5: Validation accuracy when calculating pairwise

leadership scores trained on simulated, human, and

mixed data (simulated & human), described in Sec.

4.1

of leaders i and followers j. The pairwise weights (lead-

ership scores) can be computed based on the supervised

learning approach described above, indicating the prob-

ability of one agent or goal being another agents’ leader.

After computing wi,j for all combinations of leaders and

followers, we can create a directed graph G = (V,E)

where V = I∪G and E = {(i, j)|i ∈ I, j ∈ I∪G, i 6= j},
and the weights on each edge (i, j) correspond to wi,j .

In addition, we add a special root node, where all the

goals g ∈ G have an outgoing edge to the root node.

This produces a fully connected graph with each edge

corresponding to the probability of one agent leading

another, as shown in Fig. 6 (a).

Our model builds the graph based on the the pair-

wise scores, and thus can generalize to groups with dif-

ferent sizes. The computation increases quadratically

with the size of the graph along with the number of

pairs.
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Fig. 6: (a) Graph G. The directed edges represent pairwise likelihoods that the tail node is the head node’s leader.

(b) Maximum-likelihood leader-follower graph, G∗. For each node, we select the outgoing edge that has the highest

weight as shown by the bold edges.

To create a more useful graph, we extract the max-

imum likelihood leader-follower graph G∗ by pruning

the edges of our constructed graph G. We prune the

graph by greedily selecting the outgoing edge with high-

est weight for each agent node. In other words, we select

the edge associated with the agent or goal that has the

highest probability of being agent i’s leader, where the

probabilities correspond to edge weights as in Fig. 6 (b).

When pruning, we make sure that no cycles are formed.

If we find a cycle, we will choose the next probable edge.

Our pruning approach is inspired by Edmonds’ algo-

rithm [26, 20], which finds a maximum weight arbores-

cence [42] in a graph. An arborescence is an acyclic

directed tree structure, where there is exactly one out-

going edge from a node to another. We use a modified

version of Edmonds’ algorithm since, compared to our

approach, a maximum weight arborescence is more re-

strictive; it requires the resulting graph to be a tree.

Evaluating the Leader-Follower Graph. We eval-

uate how accurate our leader-follower graph with three

or more agents is when trained on simulated two-player

and three-player data, as well as a combination of sim-

ulated and human two-player data (shown in Table 1).

We evaluated our leader-follower graph on simulated

three, four, and five-player games, as well as two and

three-player human games. In each of these multi-player

games, we extracted a leader-follower graph at each

timestep and compared our leader-follower graph’s pre-

dictions against the ground-truth labels. Our leader-

follower graph performs better than random guessing

by a large margin. The random policy selects a leader

li ∈ I ∪ G for agent i at random, where li 6= i. The

chance of being right is thus 1
|G|+|I|−1 . We then take the

average of all success probabilities for all leader-follower

graph configurations to compute the overall accuracy.

As an example, for two-player games, there are in to-

Table 1: Generalization accuracy (Acc) of leader-

follower graph (LFG) trained and tested with various

data sources.

Training
Data

Testing Data LFG
Acc

Random
Acc

2 players, simulated 3 players, simulated 0.67 0.29
2 players, simulated 4 players, simulated 0.45 0.23
2 players, simulated 5 players, simulated 0.41 0.19
2 players, simulated 2 players, human 0.68 0.44
2 players, simulated 3 players, human 0.47 0.29

3 players, simulated 4 players, simulated 0.53 0.23
3 players, simulated 5 players, simulated 0.50 0.19
3 players, simulated 3 players, human 0.63 0.29

2 players, mixed 3 players, simulated 0.44 0.29
2 players, mixed 4 players, simulated 0.38 0.23
2 players, mixed 5 players, simulated 0.28 0.19
2 players, mixed 2 players, human 0.69 0.44
2 players, mixed 3 players, human 0.44 0.29

tal three possible configurations as shown in Fig. 7. We

compute the overall accuracy of the game by averaging
1
2 , 1

2 and 1
3 , giving 0.44 (line 4, Table 1).

In all experiments shown in Table 1, our trained

model clearly outperforms the random policy. Most no-

tably, the models trained on simulated data scale natu-

rally to settings with large numbers of players as well as

human data. We use the model trained on three-player

simulated data for our experiments in Section 5.

5 Planning based on Inference over

Leader-Follower Graphs

With a representation for latent leadership structures

in human teams, we use a leader-follower graph G∗ to

positively influence human teams, i.e., move the team

towards a more desirable outcome. We describe how a



Influencing Leading and Following in Human-Robot Teams 9

1

2

𝑔! 𝑔"

(a) chain structure

1 2

𝑔! 𝑔"

(b) two agents go to the same goal

1 2

𝑔! 𝑔"

(c) two agents go to separate goals

Fig. 7: All possible leader-follower graph configurations for two-player settings.

𝑔!

𝑔"
𝑔#

1

2

3

𝑔!

𝑔"
𝑔#

1
2

3

preferred goal * preferred goal *

(a) (b)

Fig. 8: (a) In this graph, the most influential leader is agent 2. (b) The most influential leader trivially becomes

agent 1 since agents 2 and 3 are already targeting the optimal goal g∗1 .

robot can use the leader-follower graph to infer use-

ful team structures. We then describe how a robot can

leverage these inferences to plan for a desired outcome.

5.1 Inference Based on Leader-Follower Graph

Leader-follower graphs enable a robot to infer useful

information about a team such as agents’ goals or who

the most influential leader is. These pieces of informa-

tion allow the robot to identify key goals or agents that

are useful in achieving a desired outcome (e.g., iden-

tifying shared goals in a collaborative task). A robot

can then plan for a desired outcome by influencing or

following these key goals and agents. We begin by de-

scribing different inferences a robot can perform on the

leader-follower graph.

Goal Inference in Multiagent Settings. One way

a robot can use structure in the leader-follower graph

is to perform goal inference. An agent’s goal can be

inferred by the outgoing edges from agents to goals.

In the case where there is an outgoing edge from an

agent to another agent (i.e., agent i follows agent j),

we assume transitivity, where agent i can be implicitly

following agent j’s believed ultimate goal. Being able

to quickly infer the goal of multiple agents enables the

robot to plan efficiently.

Influencing the Most Influential Leader. In order

to lead a team toward a desired goal, the robot can also

leverage the leader-follower graph to predict who the

most influential leader is. We define the most influen-

tial leader to be the agent i ∈ I with the most number of

followers. Identifying the most influential leader allows

the robot to strategically influence a single teammate

that also indirectly influences the other teammates that

are following the most influential leader. For example,

in Fig. 8 (a) and (b), we show two examples of iden-

tifying the most influential leader from G∗. In the case

where some of agents are already going for the preferred

goal, the one that has the most followers among the re-

maining players becomes the most influential leader, as

shown in Fig. 8 (b).

5.2 Optimization Based on Leader-Follower Graph

The leader-follower graph allows the robot to single out

key players and goals to follow or influence. A robot

can then use this information to directly optimize for

actions that help it achieve a desired outcome: Out-
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comes such as following the crowd or influencing the

crowd’s decision through utilizing the leader-follower

graph. For instance, the probability of the robot be-

coming an agent i’s leader can be expressed as wi,r.

The probability of the robot following a goal g is wr,g.

To select actions a ∈ A that maximize an objective

involving weights wi,j in the leader-follower graph, we

generate graphs Gatt+k that simulate what the leader-

follower graph would look like at timestep t + k if the

robot takes an action at at current timestep t. Over the

next k steps, we assume human agents will continue

along the current trajectory with constant velocity.

From each graph Gatt+k, we can obtain the weights

wt+ki,j corresponding to an objective that the robot is op-

timizing for (e.g., the robot becoming agent i’s leader).

We then optimize over the robot’s actions to find the

action a∗t that maximizes a reward/outcome r that can

be expressed in terms of wt+ki,j ’s and wt+ki,g ’s.

a∗t = argmax
at∈A

r
(
{wt+ki,j (at)}i,j∈I , {wt+ki,g (at)}i∈I,g∈G

)
(3)

We describe three specific tasks that we will plan

for using the optimization described in Eqn. (3).

Reversing a Leader-Follower Relationship. A robot

can directly influence team dynamics by changing leader-

follower relationships. Given a directed edge between

agents i and j, the robot can use the optimization out-

lined in Eqn. (3) for actions that reverse an edge or

direct the edge to a different agent. For instance, to re-

verse the direction of the edge from agent i to agent j,

the robot will select actions that maximize the proba-

bility of agent j following agent i:

a∗t = argmax
at∈A

wt+kj,i (at), i, j ∈ I

The robot can also take actions to eliminate an edge

between agents i and j by minimizing wi,j . One might

want to modify edges in the leader-follower graph when

trying to change the leadership structure in a team.

For instance, in a setting where agents must collectively

decide on a goal, a robot can help unify a team with

sub-groups (an example is shown in Fig. 3 (d)) by re-

directing the edges of one sub-group to follow another.

On the other hand, the robot can also redirect edges

such that the team is dispersed, or reverse edges such

that the edges form a cycle as shown in Fig. 3 (b).

Distracting a Team. In adversarial settings, a robot

might want to prevent a team of humans from reach-

ing a collective goal g. In order to stall the team, a

robot can use the leader-follower graph to identify who

the current most influential leader i∗ is. The robot can

then select actions that maximize the probability of the

robot becoming the most influential leader’s leader and

minimize the probability of the most influential leader

following the collective goal g:

a∗t = argmax
at∈A

wt+ki∗r (at)− wt+ki∗g (at), i
∗ ∈ I (4)

Distracting a team from reaching a collective goal can

be useful in cases where the team is an adversary. For

instance, a team of military drones masquerading as

enemy drones may want to prevent the enemy team

from reaching a joint goal.

Leading a Team Towards the Optimal Goal. In

collaborative settings where the team needs to agree on

a goal g ∈ G, a robot that knows where the optimal

goal g∗ ∈ G is should maximize joint utility by leading

all of its teammates to reach g∗. To influence the team,

the robot can use the leader-follower graph to infer who

the current most influential leader i∗ is. The robot can

then select actions that maximize the probability of the

most influential leader following the optimal goal g∗:

a∗t = argmax
at∈A

wt+ki∗g∗(at), i
∗ ∈ I

Being able to lead a team of humans to a goal is useful

in many real-life scenarios. For instance, in search-and-

rescue missions, robots with more information about

the location of survivors should be able to lead the team

in the optimal direction.

6 Modeling Predator-Prey Relationships

We test the generalizability of our framework by mod-

eling a different type of group dynamics: predator-prey

relationships. Each agent has either a prey that they are

trying to capture, predators they are eluding, or both.

Predator-prey relationships are different from leader-

follower relationships in that agents are tasked with

eluding their predator. In some cases, agents must si-

multaneously capture their prey while eluding their preda-

tor, giving way to more complex dynamics than leading

and following. In human groups, predator-prey relation-

ships can be found in games such as capture-the-flag.

In capture-the flag, two teams guard regions that con-

tain each team’s flag. The goal of a team is to steal the

other team’s flag while protecting their own. Predator-

prey relationships emerge when team members attempt

to tag out members of the opposing team. An example

is shown in Fig. 9 (a), where members of the blue team

(agents 2 and 4) help their teammate (agent 1) escape

from the opposing team.
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Fig. 9: (a) Example of a predator-prey dynamic in capture the flag. Red and blue circles represent agents on

different teams. (b) Another example of a predator-prey dynamic between members of red and blue teams. (c)

Predator-prey graph where the most likely edges are bolded. (d) The robot joins the game as agent 2’s predator.

Predator-Prey Game. We modify the pursuit-evasion

game setup described in Sec. 3. In the modified ver-

sion, there are no stationary evaders (goals). Instead,

each agent in the set of agents I acts as either a preda-

tor, prey, or both. Predator agents are assigned a prey

and are required to capture it by colliding with them.

Likewise, prey agents have assigned predators and their

goal is to avoid being captured. The action space of each

agent i ∈ I is identical as in Sec. 3, Ai = {move up,

move down, move left, move right, stay still}.

Predator-Prey Graph. Using the set of predators

and preys, we can form a directed predator-prey graph.

Each node represents an agent i ∈ I. The directed edges

represent predator-prey relationships where there is an

outgoing edge from a predator to its prey. The weights

on the edges represent the probability that the tail node

is the head node’s predator. Similar to leader-follower

graphs, there can be many configurations of predator-

prey graphs; two examples are shown in Figs. 9 (a) and

(b). In this work, we experiment with various configu-

rations of the predator-prey to validate that our frame-

work can effectively capture these relationships between

the agents in this predator-prey domain.

7 Construction of a Predator-Prey Graph

In this section, we describe how we learn these graphs.

Similar to our leader-follower graphs, we use a super-

vised learning approach where we collect pairwise predator-

prey data to train a predictive model. Like the leader-

follower graph, our aim is to use this model to scal-

ably construct a predator-prey graph for multi-agent

settings. Ultimately, we hope to use this graph to build

robot algorithms that can understand and influence

predator-prey dynamics.

7.1 Pairwise Prey Scores

Data Collection. We recruited dyads to play the predator-

prey game. We assumed a chain-structured predator-

prey relationship. Predator and prey roles were ran-

domly assigned to each partner. Participants played the

game in the web browser where predators tried to col-

lide with their prey as many times as possible within

the time limit. We collected a total of 1.5 hours of data

where we collected trajectories and scores of each par-

ticipant.

We also generated synthetic human data using the

same potential field simulator as described in Sec. 4.1).

At the beginning of each game, each agent was ran-

domly assigned one prey or no prey. Only configurations

that contain no loops are considered valid. By randomly

assigning preys, we effectively covered all possible valid

configurations. In our simulator, predators moved to-

wards their prey by following an attractive potential

field and prey moved away following a negative poten-

tial field. We simulated 1000 three-agent predator prey

games. We chose three-agent games for data collection

because to have agents that being both a predator and

a prey, the minimal number of agents in the game is

three.

Training the Model. To test the generalization of

our framework in this new domain, we use the same

LSTM submodules as in Sec. 4 to predict player-player

predator-prey relationships. For each agent i ∈ I in a

game, we train our model to predict agent i’s prey by

feeding their and their partner’s trajectory data into

our submodules. We add an additional submodule where

the agent i’s trajectories are fed in twice to represent

the event that the agent does not have prey. We use a

softmax output layer with a cross-entropy loss function

to compute a probability distribution over all agents of

being agent i’s prey. Before training, we pre-processed
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the data by normalizing it, shifting it to have a zero-

centered mean, and down-sampled it. When training

our network, we used the same hyperparameters as de-

scribed in Sec. 4.

Evaluating Pairwise Scores. We evaluated the ac-

curacy of our model on held out test sets of simulated

and human data. Our network trained on three-player

data performed with a validation accuracy of 95.51% in

simulation with randomized predator-prey graph struc-

ture and 96.24% on human data with a chain structure.

Both results indicate that our framework can accurately

capture the predator-prey pairwise relationship.

7.2 Constructing and Evaluating the Predator-Prey

Graph

In settings with more than three players, we construct

a predator-prey graph based on the pairwise scores.

For each agent i, we compute pairwise weights between

agent i and all of its possible preys j ∈ I, j 6= i. In

this Predator-Prey domain, we also compute an addi-

tional weight for agent i having no prey. With all of

these scores, we then construct the graph as described

in Sec. 4.

Evaluating the Predator-Prey Graph. We tested

the generalization accuracy of the predator-prey graph

by constructing the graph at each time step and com-

paring it against the ground truth labels. The results

for testing on real human data and simulated data are

demonstrated in Fig. 10 respectively. We found that

the model trained with three agent data can success-

fully generalize to settings with more players with only

a minor decrease on the accuracy. Similar patterns to

Table 1 can also be observed here where the accuracy

drops with larger numbers of agents. This is because as

the number of agents increases, the task becomes more

challenging and it becomes more difficult for the model

to distinguish which agent is the prey.

8 Planning with the Predator-Prey Graphs

We now leverage the information from the predator-

prey graph to plan for robot behaviors that can influ-

ence group dynamics. In this work, we focus on the

task of becoming the only dominant predator among

the chain-structured predator-prey group. Accomplish-

ing this task requires two steps. First we need to identify

which agent is the top predator, and then we want the

robot to hunt for that identified top predator.

Inference Based on Predator-Prey Graph. One

direct way to identify which agent is the top predator
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Fig. 10: Generalization accuracy of the predator-prey

graph tested with simulated agents and human data.

Both models are trained with three-agent data and we

tested models in games that contain more agents.

is to identify the agent that has no predator based on

the estimated predator-prey graph. For example, as in

Fig. 9 (b), agent 1 is the top predator. In this work, we

experiment with a predator-prey chain, and therefore,

there is only one top predator among the group.

Optimization Based on Predator-Prey Graph.

After identifying the top predator, we can now again use

the predator-prey graph for optimization. At each time

step t, we infer the top predator Xt based on the current

predator-prey graph. Then, similar to Sec. 5, we gener-

ate the predator-prey graph k time steps ahead GAt

t+k,

assuming the robot takes actions At = (at, . . . , ak) in

the next k time steps. We then extract the weight wt+kj,Xt

representing robot j being the predator of the identified

top predator Xt from the graph GAt+k. By maximizing

this weight, we can compute the optimal robot actions:

At = (at, . . . , ak) = argmax
At=(at,...,ak)

wt+kj,Xt
(5)

We perform this optimization in a model predictive

control fashion [28], where we find the optimal sequence

of actions at time step t, and execute at. We then replan

for a k time-step horizon at the next time step running

the same optimization.

Other Tasks. In this work, we only demonstrate how

to leverage the predator-prey graph for inference and

optimization for the task of becoming the dominant

predator in a chain-structured predator-prey group. How-

ever, like the leader-follower graph, we emphasize that

the predator-prey graph is a general representation that

can be combined with many other tasks as well, e.g., in

more complex settings where the relationship is not lim-

ited to a chain structure. For example, the robot can

help to protect another agent by identifying who its

predators are and interfere with their actions.
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to another goal, successfully extending the game time.

9 Experiments: Leading and Following

We first evaluate our framework in the leader and fol-

lower domain. Through our experiments, we demon-

strate the efficacy of the leader-follower graph in repre-

senting the agents and further in enabling better plan-

ning and optimization for the robot actions.

We evaluate our LFG on three different tasks that

involve influencing multiagent human teams. For each

task, we compare task performance of robot policies

that use the LFG against robot policies that do not have

access to the LFG. Across all tasks, we find that robot

policies that use the leader-follower graph perform bet-

ter, showing that our graph can easily be generalized

to different settings.

Task Setup. Our tasks take place in the pursuit-evasion

domain. Within each task, we conduct experiments with

simulated human behavior. Humans move along a po-

tential field as shown in Eqn. (1), where there are two

sources of attraction: the agent’s goal (ag) and the crowd

center (ac). We also specify weights associated with

these attractions to be θg = 0.6 and θc = 0.4. In this

way, a simulated human would trade off between fol-

lowing the crowd and moving toward a target goal.

In each iteration of the task, the initial position of

agents and goals are randomized. For all of our experi-

ments, game canvas is 500×500. At every time step, the

human can move 1 unit in one of the four directions:

up, down, left, right, or stay at its position. The robot’s

action space is the same but with larger move amount

5. We let the maximum game time limit be 1000.

Implementation Detail. We simulated 5000 games

of each possible configuration, totaling 15000 games for

the two-player setting (as shown in Fig. 7) and 35000

for the three-player setting. Each game stored the po-

sition of each agent and goal at all timesteps. Before

training, we pre-processed the data by normalizing it,

shifting it to have a zero-centered mean, and down-

sampled it. Each game was then fed into our network

as a sequence. Based on our experiments, hyperparame-

ters that worked well for our training were a batch size

of 250, learning rate of 0.0001 and hidden dimension

size of 64. In addition, we used gradient clipping and

layer normalization [5] to stabilize gradient updates.

9.1 Reversing a Leader Follower Relationship

We evaluate a robot’s ability to change an edge of a

leader-follower graph. In this task, the end goal of the

robot is not to affect the environment as some of the

other tasks we describe below (e.g., influence humans

toward a particular goal). Instead, this experiment serves
as a preliminary to others where we evaluate how well

a robot is able to manipulate the leader-follower graph.

Methods. Given a human agent i who is predisposed

to following a goal with weights θg = 0.6, θc = 0.4,

we created a robot policy that encouraged the human

agent to follow the robot r instead. The robot optimized

for the probability wi,r that it would become agent i’s

leader.

Metrics. We evaluated the performance of the robot

based on the leadership scores, i.e., probabilities wi,r,

computed by the leader-follower graph.

Results. We show that the robot can influence a hu-

man agent to follow it. Fig. 12 contains averaged prob-

abilities over ten tasks. The probability of the robot be-

ing the human agent’s leader wi,r increases over time,

and averages to 73%, represented by the orange dashed

line. Our approach performs well compared to the ran-

dom method, which has an average performance of 26%,

represented by the grey dashed line.
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Fig. 12: Probabilities of a human agent following the

robot over 10 tasks. The robot is successfully able to

become the human agent’s leader as the task progresses.

9.2 Adversarial Task: Distracting a Team

We now consider a task where the robot is an adver-

sary that is trying to distract a team of humans from

reaching a goal.

In this task, there are m goals and n players in the

pursuit-evasion game. Among the n players, we have 1

robot agent and n−1 homogeneous human agents. n−2

human agents must collide with a goal at the same time

to capture it, allowing 1 human to be absent. The game

ends if all goals are captured or the game time exceeds

the limit.

The adversarial robot’s goal is to intentionally dis-

tract a team of human players so that they cannot con-

verge to the same goal quickly and thus extending the

game time. Note that simply blocking a single agent’s

way would not be a desirable solution, since we allow

for an agent to be absent when capturing the goal.

Methods. We test our optimization methods based on

the constructed leader-follower graph along with other

baseline models.

We experimented with 3 baseline strategies without

knowledge of LFG. In the Random strategy, the robot

picks an action at each time step with uniform proba-

bility. To One Pursuer strategy is that the robot agent

selects a random human agent and then goes towards

it trying to block its way. The To Farthest Goal strat-

egy selects the goal that the average distance to human

players are largest and then goes to that goal in the

hope that human agents would get influenced or may

further change their goal by observing that some play-

ers are heading for another goal.

We also experimented with two optimization mod-

els based on the LFG. LFG Closest Pursuer involves

the robot selecting the closest pursuer and choosing an

action to maximize the probability of the pursuer fol-

lowing it (as predicted by the LFG). Similarly, LFG

Influential Pursuer strategy involves the robot target-

ing the most influential human agent predicted by the

LFG described in Sec. 5 and then conducting the same

optimization of maximizing the following probability,

as shown in Eqn. (4).

Metrics. We evaluated the performance of the robot

with game time as metric. Longer game time indicates

that the robot does well in distracting human players.

Results. We conduct experiments with different game

settings by varying n (number of players) and m (num-

ber of goals). For each specified game setting, we run

the same 50 randomly initialized games for different

robot strategy and compute the mean and standard

deviation for game time over the 50 games. Across all

the game settings we experimented with, our models

based on LFG consistently outperforms methods with-

out knowledge of LFG. The experimental results with

varying number of players are summarized in Table 2.

We also visualized the results of Table 2 in Fig. 13.

As shown in Fig. 13, average game time goes up as

the number of players increases. This is because it is

more challenging for more players to reach agreement

on which goal to capture and thus takes longer time.

The consistent advantageous performance suggests the

effectiveness of LFG for inference and optimization in

this scenario.

LFG Influential PursuerLFG Closest Pursuer

Random To One Pursuer To Farthest Goal

Fig. 13: Visualization of results in Table 2 For adversar-

ial task, average game time over 50 games with 2 goals

(as in Fig. 11) with different number of players across

all baseline methods and our model.

To demonstrate robot behavior in the adversarial

game, we also took snapshots of one game as in Fig.

11. Player 1 and player 2 started very close to goal g1
and thus it’s very easy for them to capture it. The robot

approached agent 2 and tried to block its way, leading

it to another goal g2. In this way, the robot successfully

extended the game time.
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Table 2: Average game time over 50 adversarial games with varying number of players

number of goals (m=2)

Model n=3 n=4 n=5 n=6

LFG Closest Pursuer (ours) 233.04±51.82 305.08±49.48 461.18±55.73 550.88±51.67
LFG Influential Pursuer (ours) 201.94±45.15 286.44±48.54 414.78±50.98 515.92±48.80

Random 129.2±32.66 209.40±39.86 388.92±53.24 437.16±43.17
To One pursuer 215.04±50.00 231.42±44.69 455.16±58.35 472.36±49.75

To Farthest Goal 132.84±34.22 198.5±36.14 382.08±52.59 445.64±46.77

Table 3: Average game time over 50 adversarial games with varying number of goals

number of players (n=4)

Model m=1 m=2 m=3 m=4

LFG Closest Pursuer (ours) 210.94±33.23 305.08±49.48 289.22±52.99 343.00±55.90
LFG Influential Pursuer (ours) 239.04±39.73 286.44±48.54 219.56±41.00 301.80±52.00

Random 155.94±21.42 209.40±39.86 205.74±43.05 294.62±54.01
To One Pursuer 123.58±9.56 231.42±44.69 225.52±41.47 317.92±54.75
to Farthest Goal 213.36±34.83 198.5±36.14 218.68±43.67 258.30±50.64
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Fig. 14: Collaborative game snapshots for a 60 second horizon. The orange circles are human agents. The robot

moves towards agent 3 in order to help all the agents converge on g1.

9.3 Cooperative Task: Leading a Team toward the

Optimal Goal

Finally, we evaluate the robot in a cooperative setting

where the robot tries to be helpful for human teams.

The goal of the robot is to lead its teammates so that

everyone can reach the target goal that gives the team

the largest joint reward g∗ ∈ G. g∗ is not immediately

observable to all teammates. We assume a setting where

only the robot knows where g∗ is (e.g. due to its better

sensing capabilities as in Fig. 1).

The experiment setting is the same as the Adver-

sarial Task where n − 2 human agents need to collide

with a goal to capture it. In this scenario, the task is

considered successfully completed if the goal with the

largest joint reward g∗ is captured, and it is considered

failed if any other suboptimal goal is captured or the

game time exceeds the maximum limit.

Methods. Similar to the case in Adversarial Task, we

explore two models where the robot chooses to influence

its closest human agent or the most influential agent

predicted by the LFG. Different from the Adversarial

Task, here, the robot is optimizing the probability of

the target agent following itself and the probability of

them going to the desired goal.

We also experimented with three baseline methods.

Random strategy is taking random actions. To Tar-

get Goal strategy is that the robot agent goes directly

to the optimal goal g∗ and then stays there trying to

attract other human agents. To Goal Farthest Player

strategy is that the robot goes to the player that is far-

thest away from g∗ in the hope that it can influence the

target back to g∗.

Metrics. We evaluated the performance of the robot

strategy using the game success rate over 100 games.
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Results. We experimented with varying number of goals

and the results are summarized in Table 4. In this sce-

nario, going directly to the desired goal is a very strong

method since it already conveys the message to other

players that the robot is going for a specific goal. This

method is especially effective when the game is not com-

plex, i.e., the number of goals is small. However, our

model based on the LFG still demonstrates competitive

performance compared to it. Specially when the num-

ber of goal increases, the advantage of LFG gradually

becomes dominant. This indicates that, in complex sce-

narios, brute force methods that do not have knowledge

of human team hidden structure do not suffice. High-

level understanding of human teams are necessary for

better human-robot teaming in complex systems. An-

other thing to note is that the difference between all of

the methods becomes smaller as the number of goals

increases. This is because the game difficulty increases

for all methods, and thus whether a game would suc-

ceed depends more on the game’s initial conditions. We

Table 4: Success rate over 100 collaborative games with

varying number of goals m.

number of players (n=4)

Model m=2 m=3 m=4 m=5 m=6

LFG Closest Pursuer 0.59 0.38 0.29 0.27 0.22
LFG Influential Pursuer 0.57 0.36 0.32 0.24 0.19

Random 0.55 0.35 0.24 0.21 0.20
To Target Goal 0.60 0.42 0.28 0.24 0.21

To Goal Farthest Player 0.47 0.29 0.17 0.19 0.21

took snapshots of one game as in Fig. 14. In this game,

the robot approaches other agents and the desired goal

in the collaborative pattern, trying to help catch the

goal g1.

10 Experiments: Predator-Prey

We next evaluate our framework in the predator-prey

domain. We investigate whether our robot can utilize

the predator-prey graph to insert itself into the game

as the top predator.

Task Setup. We evaluate our approach with both sim-

ulated and real human agents in the modified pursuit

evasion environment. In all of our experiments, agents

follow a chain structure as shown in Fig. 15. We ref-

erence each (simulated and real) human agent by their

ids 1 . . . n, where n is the number of human agents.

Each agent is instructed to capture the agent above it

and run away from the agent below it. Thus agent 1

will always be the top predator and agent n will be the

bottom-most prey. The robot’s task is to join the game

and become the top predator, i.e., capture agent 1.

An example of a 4 player game is shown in Fig. 15.

Agent 1 is the top predator that tries to capture agent 2.

Agent 2 aims to capture agent 3 but also tries to avoid

being captured by agent 1. Agent 3 is at the bottom

of the predator-prey chain and simply tries to avoid

being captured. The robot joins and tries to become

the top predator by capturing agent 1. Importantly,

we do not inform the robot that its goal is to capture

agent 1. The robot has to figure this out by relying

on the learned graph structure. Similarly, we also do

not explicitly inform the other agents about the robot’s

goal, i.e. the other agents will treat the robot neither

as its predator nor prey.

The initial position of all agents are randomized.

Our experiments are conducted on a canvas of size 500

x 500. At each time step, each agent can move 3 units

in one of the cardinal directions or choose to stay in

place.

Methods. In order to become the dominant predator,

the robot first identifies the top predator. It then opti-

mizes for the probability that it becomes that agent’s

predator, as described in Sec. 8. We compare against

two methods with our predator-prey graph: a random

agent (Random) and an agent that optimizes for mov-

ing towards the center of the other three agents (Cen-

ter). Center encourages the robot agent to stay closer

to the group without knowing which agent is the top

predator. By including the Center method, we hope to

verify that the robot is actually following agent 1 and

not following other agents.

Metrics. We evaluated the performance of the robot

based on the average number of time steps that the

robot agent is in collision with agent 2. Longer collision

time indicates that the robot performs well by captur-

ing the top predator among the other agents.

Results with Simulated Humans. We conduct ex-

periments with different settings by varying the num-

ber of agents. For each specified game setting, we run

the same 100 randomly initialized games and compute

the mean and standard error for the time the robot

agent is capturing the top predator. The experimental

results are summarized in Fig. 16. Across all the set-

tings, the predator-prey graph that our method used

was trained only with three-player data. We leverage

this graph to optimize robot behavior in various multi-

agent games. We can see that our method captures

prey for a longer amount of time compared to both

Random and Center methods in the three-agent and

four-agent settings. When the number of agents gets
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Fig. 15: Predator-prey game snapshots. The different colored circles represent agents in different teams. (a) Agents

follow a chain structure in the predator-prey game. (b) As agent 2 attempts to capture agent 3, agent 1 intervenes

and attempts to capture agent 2. (c) Agent 2 flees. (d) Agent 2 attempts to capture agent 3 again.

larger, e.g. when we have five agents, the performance

degrades. This is because as the number of agents in-

creases, the task becomes more challenging and corre-

spondingly, the predator-prey generalization error also

accumulates both in the inference and the optimization

process.
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Fig. 16: Average time the robot agent capturing (in

collision with) the top predator over 100 games with

varying number of agents.

Results with Human Participants. To evaluate the

effectiveness of our framework against real human users,

We recruited human participants to play 3 player and

4 player versions of the game. We conducted 6 games

with different groups of participants. Each group played

the game three times with a robot following our algo-

rithm as well as the Center and Random methods in a

randomized order. Results are shown in Table 5.

In the 3 player setting, we report the mean time

the robot and agent 1 were in collision with their prey

as well as the ratio of the two means. We do not re-

port agent 2’s score because they had no assigned prey.

The ratio highlights the effectiveness of the robot over

the other human predator, and thus acts as a good

metric for assessing the robot policy. Looking at the

results, our method achieves a higher ratio than Ran-

dom demonstrating the effectiveness of the robot pol-

icy when interacting with real humans. In 3 player set-

tings, Center places the robot in between the two hu-

man agents, making it impossible for agent 1 to cap-

ture agent 2 without being captured by the robot. This

makes the robot’s job as a predator trivial. Center is

therefore a special case of the 3 player setting. In prac-

tice, this often leads to stalemates where all agents re-

mained far apart from each other, as shown by agent

1’s 0 mean in Table 5. However, in two out of the six

games, agent 1 came close enough to the robot, which
explains the robot’s large average and standard devia-

tion for Center.

In the 4 player setting, we report the mean time

the robot were in collision with their prey. With larger

number of agents, our method demonstrates its advan-

tage of capturing the group structure more and achieves

highest performance. Compared to the special case in

3 player settings, the crowd’s center was less correlated

with its prey’s position and thus Center demonstrates

inferior performance compared to our method.

11 Discussion

Summary. We propose an approach for modeling group

behavior in multi-agent human teams. We use a combi-

nation of data-driven and graph-theoretic techniques to

learn a graph-based representation for leading-following

and predator-prey dynamics. This graph representa-

tion encoding human team hidden structure is scal-
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Table 5: Average number of time steps an agent is in collision with its prey over 6 games with 2 and 3 human

participants.

Game Agent Ours Center Random

3 player game Robot 229.67 ± 164.4 657.44 ± 1365.04 103.78 ± 100.94
Human Agent 1 132.17 ± 265.9 0 438.89.83 ± 858.63

Robot/Human Agent 1 1.74 N/A 0.24
4 player game Robot 230.83 ± 93.32 136.64± 102.26 7.13 ± 44.59

able with the team size (number of agents) since we

base the model on local, pairwise relationship predic-

tion and combine them to create a global model. We

demonstrate the effectiveness of our graph structure by

testing optimization-based robot policies that leverage

the graph to influence human teams in different scenar-

ios. Our policies are general and perform well across all

tasks compared to other high-performing task-specific

policies.

There are several ways in which our framework can

be applied to more complex real-world settings. First,

we can extend our approach to partially observable set-

tings. When human agent positions are partially ob-

servable (i.e., the robot can only access the positions

of its nearest neighbors), our framework can still be

applied locally. For instance, the robot can determine

local leader-follower structures that can be updated as

the robot moves around and gathers more information.

We include preliminary results on what running our

framework on real robots might look like in Fig. 17. We

use Zooids robots for our experiment, which is a collec-

tion of custom-designed wheeled micro tabletop robots

and can be used for various tasks including swarm draw-

ing, interactive swarm visualization [49]. Users control

the movement of Zooids through a GUI on computers

by dragging the zooids icons to the intended moving

directions from the interface. The video can be found

here: https://youtu.be/6t_IfJ82EvE. One robot (high-

lighted in blue) was controlled by our framework and

the rest were controlled by human users. In this coop-

erative task, the team would only receive reward if all

agents go to the same goal within the maximum game

time limit. There are two goals in the game, goal 1 in

the bottom right and goal 2 in the upper left as shown in

Fig. 17. The robot agent knows that goal 1 has largest

reward and tries to lead the team towards the optimal

goal.

Limitations and Future Work. We view our work

as a first step into modeling latent, dynamic human

team structures. Although our framework is general to

different group dynamics and can scale to various team

sizes, we do recognize that the performance degrades

when the task complexity increases. Examples include

when the number of goals or number of agents becomes

too large, as shown in Fig. 16. We observe that when

increasing the number of agents, the assumption that

group dynamics can be explained through local pair-

wise interactions weakens due to the complexity of in-

teractions. For instance, when we recruited 5 humans

to play the predator-prey game, “alliances“ emerged

where agents that were non-adjacent in the predator-

prey chain would team up. These types of dynamics

were not observed in two-player games. These types of

scenarios are challenging for our models, and the predic-

tion error also accumulates both in the inference process

and the optimization process. Further exploration in

these complex scenarios is needed to enable our model

to be self-aware and corrective.

Another limitation is the reliance on simulated hu-

man behavior to test our framework. Further experi-

ments with large-scale human data are needed to sup-

port our framework’s effectiveness for understanding of

noisier human behavior.

Finally, the robot policies that use the graph rep-

resentation are fairly simple. Although this may be a

limitation, it is also promising that simple policies were

able to perform well using the proposed graph struc-

tures.

For future work, we plan to test our model on large

scale human-robot experiments in both simulation and

on real robot platforms. Specifically, we plan on using

navigation platforms of robot swarms to further im-

prove our model’s generalization capacity. We also plan

on experimenting with combining the graph representa-

tion with more advanced policy learning methods such

as reinforcement learning. We think our graph repre-

sentation could contribute to multi-agent reinforcement

learning in various ways such as reward design and more

effective state representation.
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Fig. 17: (a) The Zooids robots. (b) Cooperative Zooids robot game snapshots for a 25 second horizon. The

highlighted blue robot is controlled by our framework, the rest were controlled by human users. There are two

goals in the game, goal 1 in the bottom right and goal 2 in the upper left. The robot tries to aggressively to lead

the human team towards the more optimal goal 1.
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