
Exchangeable Input Representations for Reinforcement Learning

John Mern, Dorsa Sadigh, and Mykel J. Kochenderfer

Abstract— Poor sample efficiency is a major limitation of
deep reinforcement learning in many domains. This work
presents an attention-based method to project neural network
inputs into an efficient representation space that is invariant
under changes to input ordering. We show that our proposed
representation results in an input space that is a factor of m!
smaller for inputs of m objects. We also show that our method is
able to represent inputs over variable numbers of objects. Our
experiments demonstrate improvements in sample efficiency for
policy gradient methods on a variety of tasks. We show that our
representation allows us to solve problems that are otherwise
intractable when using naı̈ve approaches.

I. INTRODUCTION

Deep reinforcement learning (RL) achieves state-of-the-
art performance across a variety of tasks [1]. However,
successful deep RL training requires large amounts of sample
data. Even relatively simple tasks can require millions to tens
of millions of samples [2]. While gathering large amounts of
data in simulated domains may be achievable, it is often
infeasible for planning and control of physical systems.
Various learning methods have been proposed to improve
sample efficiency. For example, model-based learning and
incorporation of Bayesian priors use expert knowledge to
reduce the data requirement [3], [4].

The way that the input to an RL problem is represented
can also impact the sample efficiency of a given learning
approach. In multi-object environments, it is common to
represent input states as concatenations of sub-state vectors
of the objects within the environment. For example, a state
in a robotic manipulation task may be represented as a set
of the position and orientation vectors for all work pieces in
the work space. In this case, we can refer to the sub-states
of each piece as an object in the factored state [5].

For many problems, an optimal policy should provide
the same action for any permutation of the input set. In
these cases, the objects are exchangeable. The key insight
of this paper is that we can significantly improve efficiency
by leveraging the exchangeable structure inherent in many
reinforcement learning problems.

When inputs to neural networks are ordered sets, permu-
tation invariance must be learned during training [6]. To
avoid this additional learning requirement, methods have
been proposed to represent inputs in an order-invariant form.

The Object Oriented Markov Decision Process (OO-MDP)
framework [7] proposes such a method for exchangeable ob-
jects, however the presented methods are limited to discrete
spaces with tabular representations. Approximately Optimal

The authors are with Stanford University, Stanford, California, 94305.
Email: {jmern91,dorsa,mykel}@stanford.edu

State Abstractions [8] proposes continuous approximations
of the OO-MDP framework which extend to Q-learning
problems with continuous input spaces. Object-Focused Q-
learning [9] uses object classes to decompose the Q-function
output space by interaction types, though it does not address
exchangeability in the input space.

This paper builds upon the insights presented in these
works to propose a method to map any set of exchangeable
objects to an order invariant representation. We show that
applying such a mapping reduces the input space size by a
factor of m!, where m is the number of exchangeable objects.

Deep Sets [10] proposes a permutation invariant abstrac-
tion method similar to the one proposed in this paper. Addi-
tionally, they provide necessary and sufficient conditions for
permutation invariant input mappings. Unlike our method,
the method proposed produces a static mapping. That is,
each input object is weighted equally in the invariant space
regardless of value during the mapping.

In contrast, our method proposes a permutation-invariant
attention mechanism for the input mapping. Attention mech-
anisms are used in various deep learning tasks to dynamically
filter the input to a down-stream neural network to emphasize
the most important parts of the original input [11], [12],
[13]. We adapt a dot-product neural network to efficiently
apply dynamic attention [14]. We also propose a method
to leverage the partial exchangeablity of environments with
multiple object classes.

An additional challenge facing deep RL comes from
environments with varying numbers of objects. Most neural
network architectures require a fixed input size. Tasks with
varying numbers of objects are often solved with ad-hoc
approaches such as input zero-padding. These methods can
often lead to training inefficiencies [15]. We show that the
proposed attention mechanism can accept varying numbers
of input objects without ad-hoc approximation.

For review, the contributions presented in this paper are:
• An attention mechanism to map exchangeable object

sets to permutation-invariant space.
• Demonstration that the attention mechanism is robust to

varying numbers of input objects.
• A method to apply the attention mechanism to problems

with multiple classes of exchangeable objects.
• Empirical study of the sample-efficiency gains of the

abstraction method.

II. PROBLEM STATEMENT

Deep RL is a class of methods to solve sequential decision
problems using deep neural networks. To solve a sequential
decision problem is to find a policy π that maps state inputs

πfilter

πabstraction

si
(1)

⋮
si

(m)

Ai ∈ ℝm xn

Softmax
yi ∈ ℝm x1

Zi ∈ ℝm xk

wi ∈ ℝmx1

∑
si

*∈ ℝ1xk

(Input)

(Output)

Fig. 1. Permutation invariant attention mechanism. Objects {s(1)i , . . . ,s(m)
i } of state Si are arrayed and passed into two neural networks πfilter and πabstraction.

A softmax operation is performed on the π f ilter outputs and the resulting vector is element-wise multiplied with the outputs of πabstraction. This resulting
array is summed along the m dimension, resulting in the order-invariant output s∗i ∈ Rk .

to actions that maximize the expected discounted sum of
rewards. Policies are closed-loop plans, in that they are
reactive to the state of the environment.

It is common to represent the state of an RL problem as
a set of objects. This approach leads the sample complexity
of the problem to grow exponentially with the number of
objects in the worst case [16]. This growth can be reduced by
treating as exchangeable the sub-state vectors corresponding
to individual objects.

Definition II.1. We define a set of random variables X to
be exchangeable if and only if for any finite subset of X ,
and any of the permutations of this subset, i.e., X̂ ,X̂ζ ⊂X :

P(X̂) = P(X̂ζ),

where X̂ is a finite set of random variables and X̂ζ is an
arbitrary permutation of X̂ .

Objects that may be treated as exchangeable are often
referred to as being from the same class. For example, in
an autonomous vehicle control problem, we may consider
automobiles as one class and pedestrians as another class.

Related to exchangeable variables are permutation invari-
ant functions. Permutation invariant functions are functions
that operate consistently over sets of exchangeable variables.
In other words, the output of the function operating on a set
of exchangeable variables is invariant under permutations of
the set ordering.

Definition II.2. If S is a state defined by a set of objects
and Π is the set of all permutations on S, then a function f
is defined to be permutation invariant if and only if:

f (S) = f (Ŝ) ∀ Ŝ ∈Π

The problem this work seeks to address is to specify a
permutation invariant function that can map ordered sets of
exchangeable objects into an abstract state-space that

1) Retains all information necessary to solve the RL
problem;

2) Can map sets of varying size; and

3) Can be applied to problems with multiple object
classes.

III. PROPOSED APPROACH

Our objective is to reduce the sample complexity of deep
reinforcement learning. To achieve this, we will leverage the
exchangeablity of objects to reduce the size of the input
space. We will propose a method to map sets of objects Si to
abstractions S∗i such that the mapping function is permutation
invariant. Because abstracted space will be insensitive to or-
der, the searchable input space of the reinforcement learning
problem will be smaller, improving the sample efficiency of
the learning process.
Attention Mechanism. We propose the attention network
architecture shown in fig. 1, which is a permutation invariant
implementation of dot-product attention. The mechanism is
composed of two separate neural networks, abstraction net-
work πabstraction and the filter network π f ilter. The abstraction
network projects each object state vector into the permutation
invariant space. The filter network generates an importance
weight for each abstracted vector. Using the outputs of
each, the abstracted state vectors are summed to produce
the permutation invariant output s∗i .

Assume the full state input Si is a set of m object state
vectors s(j)

i ∈Rn. These state vectors are arranged in an array
Ai ∈ Rm×n. The arrays are then passed through each fully-
connected neural network. The neural networks apply the
transform σ(X(k)

i W (k)+b(k)) at each layer, where σ is a non-
linear activation function, X(k)

i is the input to the k layer, and
W (k) and b(k) are the weight and bias parameters respectively.
Given this transform, each row of a layer’s output is only
dependent upon the corresponding row of the input.

The π f ilter network outputs a weight for each input object
as the vector yi ∈ Rm×1. The πabstraction network outputs an
abstracted state for each object as the array Zi ∈ Rm×k. The
array and vector are multiplied element-wise, broadcasting
along the k dimension. The array is then summed along the
m dimension, resulting in the final abstracted state output

𝛹(1)

𝛹(ℓ)

Ai
(1)∈ ℝmxn

Ai
(ℓ)∈ ℝmxn

⋮⋮

s*
i

(1)∈ ℝ1xk

s*
i

(ℓ)∈ ℝ1xk

⋮ Concat
s*

i ∈ ℝ1x(k⋅ℓ)

Fig. 2. Multi-class attention mechanism architecture. Object classes S(j)
i are arrayed to A(j)

i and passed into parallel attention mechanisms Ψ(j). The
abstract output vectors s(j)∗

i are concatenated into a single vector s∗i ∈ R1×(k∗l)

s∗i ∈ Rk. It is the final summing operation that causes the
mechanism to be permutation invariant.

The size of the final output k is a design parameter, as are
the particular designs of the neural networks. In this study,
we found that setting k≥ m̂×n provided good performance,
where m̂ is the average number of objects present. This
allowed for full state information to be retained on average.
The abstraction and filter neural networks used in this study
were two-layer, fully connected networks with rectified linear
units (ReLU) activations.

The parameters of the networks in the attention mechanism
are not known a priori. They may be learned along with the
parameters of the main graph. The sub-graph parameters may
be updated using the gradient signal from the main loss term.
No additional loss-term or gradient definition is required.
Sample Efficiency. We can now define the search space
reduction of an invariant mapping. Define a state space S
such that S = {s1, . . . ,sm} for S ∈S , where m is the number
of objects. Let each object si take on n unique values. If we
represent the states as sets of objects in the RL algorithm,
then the state-space size |S | can be calculated from the
expression for m permutations of n values.

If all objects are exchangeable, there exists an abstraction
that is permutation invariant. Since the order does not matter,
the size of this abstract state |Ŝ | can then be calculated from
the expression for m combinations of n values:

|S |= n!
(n−m)!

, |Ŝ |= n!
m!(n−m)!

(1)

Using a permutation invariant representation reduces the
input space that the RL algorithm is required to search by a
factor of |S||Ŝ| =

1
m! compared to an ordered representation.

Permutation Invariance. It can be shown that it is necessary
and sufficient for a mapping f to be invariant on all countable
sets X if and only if it can be decomposed using trans-
formations φ and ρ , where φ and ρ are any vector valued
functions, to the form [10]:

f (X) = ρ

(
∑

x∈X
φ(x)

)
(2)

We will now demonstrate that the proposed mechanism can
be factored into the permutation invariant form of eq. (2).

The variable names below correspond to the variable names
in fig. 1:

s∗i =
m

∑
j=1

z(j)
i w(j)

i (3)

=

(
m

∑
j=1

ey(j)
i

)−1 m

∑
j=1

z(j)
i ey(j)

i (4)

ρ(X)←

(
m

∑
j=1

ey(j)
i

)−1

�X (5)

x∗i = ρ

(
m

∑
j=1

πinputs(s
(j)
i)eπfilter(s

(j)
i)

)
(6)

φ(s(j)
i)← πinputs(s

(j)
i)eπfilter(s

(j)
i) (7)

s∗i = ρ

(
m

∑
j=1

φ(s(j)
i)

)
(8)

Equation (4) follows from the definition of the Softmax
operation. The neural networks can be treated as functions
operating on single objects because the parameters are shared
for all objects. The final line shows the mechanism in the
form defined by equation (2), completing the proof.

Additionally, it can be seen that the projection can handle
variable numbers of input objects. As the number of indi-
vidual state vectors m changes, the dimension of the output
vector s∗i remains constant as a result of the final summation
operation. The dynamic weighting allows the network to
focus on the retain more information about the important
objects in the projection.
Multi-Class Attention. In environments for which all ob-
jects are of the same class, the attention mechanism described
can be applied directly. However, a slight extension is re-
quired for tasks with multiple object classes. Before defining
that extension, we will provide a formal definition of class.

Definition III.1. If S is a state defined by a set of objects and
S0 and S1 are disjoint subsets of S, S0 and S1 define object
classes if all objects s0

i ∈ S0 are exchangeable and s1
i ∈ S1

are exchangeable.

In our robotic manipulator example, object classes could
be defined by work piece type such as nuts and bolts.

In problems with multiple object classes, only objects
within a given class are exchangeable. To address this, we
can implement a separate attention mechanism for each
object class. The object vectors for each class S(k)i are each
arrayed and passed to a corresponding mechanism Ψ(k), each
outputting a separate abstract state s∗(k), as shown in fig. 2.

Each class-specific mechanism Ψ(k) has the same archi-
tecture as previously described and shown in fig. 1. The
outputs from each sub-graph are concatenated into a final
abstracted input vector. Note that this input vector will be
ordered; however, this is appropriate as the abstract class
vectors are not exchangeable.

IV. EXPERIMENTS

We conducted a series of experiments to validate the effec-
tiveness of our proposed abstraction. In the first two tasks
a scavenger agent navigates a continuous two-dimensional
world to find food particles. The third task is a convoy
protection task with variable numbers of objects.

Scavenger Task 1 is designed to illustrate the effect of
abstraction with a single class of objects. The goal of
Scavenger Task 2 is to validate the effect of multi-class
abstraction through the introduction of poison particles to
the environment. Renderings of both of these environments
are shown in fig. 3.
Task 1: Food Scavenger. The state space of Task 1 contains
vectors s ∈R2m+2, where m is the number of target objects.
The vector contains the relative position of each food particle
as well as the ego position of the agent. The action space
contains velocity vectors in two dimensions a ∈ R2 that are
limited to a maximum velocity magnitude such that ‖a‖ ≤
amax. The agent receives a reward of +1.0 when reaching a
food particle, and −0.05 for every time-step otherwise.

The state transition model is deterministic with agent
position updated at each time-step as shown below, where
δ is the simulated time-step interval:

st+1← st +δat (9)

The agent is initialized at the center of the world at each
episode and the food positions are sampled from a uniform
distribution. The episode terminates upon reaching a food
particle or when the number of time-steps exceeds a limit.

We trained a stochastic policy to solve this task with
and without the proposed attention mechanism. The baseline
policy trained without our attention mechanism received a
vector concatenation of the object state set, with each object’s
position in the vector remaining fixed through training.
This is considered the standard RL approach. This same
vector was used as an input to the attention mechanism, the
output of which was used by the policy. All other training
parameters were shared between the two approahces.

The policies were feed-forward neural networks, with four
hidden layers of 64 units each and Leaky ReLU activations.
The network output parameters for a multivariate Gaussian
distribution with diagonal covariance. The policy was trained
using Proximal Policy Optimization (PPO) [17], with epoch
batch sizes of 1,000 time steps and update batch-size of 256

(a) (b) (c)

(d) (e) (f)

 agent food poison

Fig. 3. Scavenger: (a) Task 1; 2 Objects (b) Task 1; 3 Objects (c) Task 1;
5 Objects (d) Task 2; 4 Objects (e) Task 2; 6 Objects (f) Task 2; 10 Objects

steps. The policy ratio clipping parameter was set to 0.1
and no entropy bonus was provided. The reward signal used
was advantage as calculated by the Generalized Advantage
Estimation Lambda (GAE-λ) [18], with λ = 0.9 and γ =
0.99. Policies were trained for cases with varying numbers
of objects, from two to five particles.
Task 2: Food Scavenger with Poisons. Scavenger Task
2 added one poison particle for each food particle in the
environment. If an agent reaches a poison particle, a reward
of −1.0 is given and the episode terminates. As with the
food particles, the initial positions of the poison particles
are sampled from a uniform distribution. The remainder of
the task is identical to Task 1. As before, we train our policy
with a baseline and abstracted representation.

This extended task was developed to test the effect of
abstraction over multiple classes. In our framework, poison
objects are in a separate class from food objects.
Task 3: Convoy Protection. A final experiment was con-
ducted on a more difficult task in which the number of
objects varies across episodes. The task requires a defender
agent to protect a convoy that follows a predetermined path
through a 2D environment. Attackers are spawned at the
periphery of the environment during the episode, and the
defender must block them while they attempt to approach
the convoy. The environment was simulated in Anvel, a high-
fidelity ground-vehicle simulation engine. We decomposed
the solving of this problem using a hierarchical learning
approach in which a primitive policy was trained a priori
and used with fixed parameters over the training of a high-
level policy. The primitive policy was trained to map the
desired vehicle location change to vehicle commands (wheel
orientation and throttle). Each time-step for the primitive
policy was set to 0.1 second of simulation world time.

Because the training of the high-level policy is of interest
to this work, we will define the task in terms of its inputs
and outputs. The state space is the space of vectors repre-
senting the state of each non-ego vehicle in the environment

Convoy initial position

Defender initial position

Convoy Trajectory

Attacker spawn pointsAttacker spawn points

Defender spawn point

Convoy spawn point Convoy trajectory

Goal location

Convoy

Defender
Attacker

Fig. 4. Robotic Convoy Task Environment. Defender agent must protect the convoy as it travels across the environment by blocking the attackers from
approaching.

0 2000 4000 6000 8000 10000
Training Epoch

−3

−2

−1

0

1

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Agent Training Curves

Optimal Baseline Abstracted

Fig. 5. Convoy Task Training Curve. “Abstracted Score” shows per-
formance of agent with attention mechanism. “Baseline Score” shows
performance of the agent without attention mechanism.

(x,y,status), where the status is a binary flag of whether
or not the object is currently active. The full state also
contains the state of the ego-vehicle (x,y,θ), where θ is
the z-axis orientation of the vehicle. The action space space
contains vectors of the reachable changes in position. The
three vehicle convoy was generated at a fixed point at the
left side of the environment for each episode and traveled at a
constant rate toward the right. The attackers were spawned at
random times from one of eight spawn points at the periphery
of the environment. The attackers approached the closest
convoy member and with maximum speed equal to twice
the convoy speed.

The episode terminates when all convoy members either
reach the goal position or are reached by an attacker. The
agent receives a reward of −1.0 for each convoy member
that is attacked and a reward of +0.1 for each attacker that
is successfully blocked. As with previous experiments, we
trained this policy with a baseline representation in which
all object states were concatenated in fixed-order vectors and
with a representation generated with our proposed methods.

V. RESULTS

The Scavenger 1 training curves for the baseline and
abstracted policies are shown in fig. 6. A simple optimal
policy was defined for the task (travel toward to closest

particle) and the performance of this policy is also shown
on the graphs.

The introduction of the permutation invariant representa-
tion allowed the RL algorithm to efficiently scale to tasks
with more objects. PPO failed to solve the problem in 1,000
training epochs using the naive representation for more than
two targets. Using the abstraction, PPO solved the problem
for tasks up to five targets. A slight slowdown in early
learning can be seen in the abstracted cases, likely due to the
need to learn the parameters of the abstraction sub-graph.

In Scavenger Task 2, PPO fails to scale beyond two targets
(four total objects) while learning on the naive representation.
While using our proposed permutation invariant representa-
tion, the algorithm effectively scales to cases of up to 10
total objects in only 1,000 training epochs.

The abstraction was also tested for the more difficult
convoy protection problem. This problem presented the ad-
ditional challenge of accommodating an input space with a
variable number of objects and a long time horizon. In this
case, PPO was completely unable to learn using the naive
representation over 10,000 training epochs containing 20M
sample time steps. With the invariant abstraction, the algo-
rithm was able to successfully learn a policy that achieved
average performance within the one-σ bound of the optimal
policy in only 3,000 epochs (6M time steps). This demon-
strates that even in complex tasks, a significant improvement
in sample efficiency is gained with the abstraction.

VI. CONCLUSION

Summary. We presented an attention-based method to
project sets of object state vectors into representations that
leverage the exchangeability of objects. We showed that this
attention mechanism is permutation invariant. In order to
apply this mechanism across multiple object classes, we
presented a simple extension, allowing the leveraging of
class-dependent object exchangeability. The proposed mech-
anism was also shown to accommodate varying numbers of
objects. We demonstrated the effectiveness of the approach
to enhance the scalability of the PPO policy gradient learning
algorithm on a set of demonstration problems. Our simple
scavenger tasks highlighted the effect of ignoring exchange-
ability, with PPO unable to scale with the number of objects.
In addition, we demonstrated the effect of using the method
in a more difficult hierarchical learning problem.

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2
E

pi
so

de
 M

ea
n

Pe
rf

or
m

an
ce

Food Scavenger Training: 1-Object

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 2-Objects

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 3-Objects

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 5-Objects

Optimal Baseline Abstracted

Fig. 6. Scavenger Task 1 Training Curves. Each graph shows learning on task with given number of target objects.

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 1-Object

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2
E

pi
so

de
 M

ea
n

Pe
rf

or
m

an
ce

Food Scavenger Training: 2-Objects

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 3-Objects

0 200 400 600 800 1000
Training Epoch

−6

−4

−2

0

2

E
pi

so
de

 M
ea

n
Pe

rf
or

m
an

ce

Food Scavenger Training: 5-Objects

Optimal Baseline Abstracted

Fig. 7. Scavenger Task 2 Training Curves — Each graph shows learning on task with given number of target objects.

Limitations and Future Work. Though the abstraction im-
proved the ability to learn with more objects, it was observed
to slow down learning on tasks with fewer objects. This is
likely due to the need to learn the additional parameters of
the attention network. For tasks with fewer objects, a static
mapping such as proposed in Deep Sets may be appropriate.

Another limitation of our work is the reliance on dot-
product attention. While this method does enable dynamic
weighting of objects during mapping, the importance is
determined for each object without considering the other
objects present. An attention mechanism that also considers
interactions between objects in weighting could provide
better performance.

Our work only addressed the effects of exchangeability in
state representation, though similar investigation should be
made into other parts of the problem. In particular, extensions
of the concept of interaction classes should be developed to
leverage exchangeability in the action space and transition
function. In our approach, we fixed several elements of the
attention graph, such as the abstracted state dimension, as
hyperparameters. The effect of these on learning rate and
converged policy performance should be further investigated.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol.
550, 2017.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” Nature, vol. 518, 2013.

[3] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning (ICML), 2016.

[4] B. Spector and S. J. Belongie, “Sample-efficient reinforcement learn-
ing through transfer and architectural priors,” Computing Research
Repository, 2018.

[5] J. Mern, D. Sadigh, and M. J. Kochenderfer, “Object exchangability in
reinforcement learning,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2019.

[6] I. Liu, R. A. Yeh, and A. G. Schwing, “PIC: permutation invariant
critic for multi-agent deep reinforcement learning,” Computing Re-
search Repository, 2019.

[7] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representa-
tion for efficient reinforcement learning,” in International Conference
on Machine Learning (ICML), 2008.

[8] D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near optimal be-
havior via approximate state abstraction,” in International Conference
on Machine Learning (ICML), 2016.

[9] L. C. Cobo, C. L. I. Jr., and A. L. Thomaz, “Object focused q-learning
for autonomous agents,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2013.

[10] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in Neural Information
Processing Systems (NIPS), 2017.

[11] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in International Conference
on Machine Learning (ICML), 2015.

[12] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Conference on Empir-
ical Methods in Natural Language Processing, (EMNLP), 2015.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer
networks,” in Advances in Neural Information Processing Systems
(NIPS), 2015.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems (NIPS), 2017.

[15] W. Woof and K. Chen, “Learning to play general video-games via an
object embedding network,” in IEEE Conference on Computational
Intelligence and Games (CIG), 2018.

[16] P. Robbel, F. Oliehoek, and M. Kochenderfer, “Exploiting anonymity
in approximate linear programming: Scaling to large multiagent
mdps,” in AAAI Conference on Artificial Intelligence (AAAI), 2016.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” Computing Research
Repository, 2017.

[18] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage
estimation,” in International Conference on Learning Representations
(ICLR), 2016.

