
Cooperative Autonomous Vehicles that Sympathize with Human Drivers

Behrad Toghi1, Rodolfo Valiente1, Dorsa Sadigh2, Ramtin Pedarsani3, Yaser P. Fallah1

Abstract— Widespread adoption of autonomous vehicles will
not become a reality until solutions are developed that enable
these intelligent agents to co-exist with humans. This includes
safely and efficiently interacting with human-driven vehicles,
especially in both conflictive and competitive scenarios. We
build up on the prior work on socially-aware navigation and
borrow the concept of social value orientation from psychology
—that formalizes how much importance a person allocates to
the welfare of others— in order to induce altruistic behavior
in autonomous driving. In contrast with existing works that
explicitly model the behavior of human drivers and rely on
their expected response to create opportunities for cooperation,
our Sympathetic Cooperative Driving (SymCoDrive) paradigm
trains altruistic agents that realize safe and smooth traffic flow
in competitive driving scenarios only from experiential learning
and without any explicit coordination. We demonstrate a
significant improvement in both safety and traffic-level metrics
as a result of this altruistic behavior and importantly conclude
that the level of altruism in agents requires proper tuning as
agents that are too altruistic also lead to sub-optimal traffic
flow. The code and supplementary material are available at:
https://symcodrive.toghi.net/

I. INTRODUCTION

The next generation of transportation systems will
be safer and more efficient with connected autonomous
vehicles. Vehicle-to-vehicle (V2V) communication enables
autonomous vehicles (AVs) to constitute a form of mass
intelligence and overcome the limitations of a single agent
planning in a decentralized fashion [1]. If all vehicles on
the road were connected and autonomous, V2V could allow
them to coordinate and handle complex driving scenarios
that require selflessness, e.g., merging to and exiting a
highway, and crossing intersections [2]. However, a road
shared by AVs and human-driven vehicles (HVs) naturally
becomes a competitive scene due to their different levels of
maneuverability and reaction time. In contrast with the full-
autonomy case, here the coordination between HVs and AVs
is not as straightforward since AVs do not have an explicit
means of harmonizing with humans and therefor require to
locally account for the other HVs and AVs in their proximity.

To further elaborate on this need, assume the merging
scenario depicted in Figure 1. The merging vehicle, either
HV or AV, faces a mixed group of AVs and HVs on the
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Fig. 1: Seamless and safe highway merging requires all AVs
working together and accounting for the human-driven vehicles’
utility. (top) Egoistic AVs solely optimize for their own utility,
(bottom) Altruistic AVs compromise on their welfare to account
for the human-driven vehicles.

highway and needs them to slow-down to allow it to merge.
If AVs act selfishly, it will be up to the HVs in the highway to
allow for merging. Relying only on the human drivers can
lead to sub-optimal or even unsafe situations due to their
hard-to-predict and differing behaviors. In this particular
example, assuming egoistic AVs, the merging vehicle will
either get stuck in the merging ramp and not be able to
merge or will wait for an HV and risk on cutting into the
highway without knowing if the HV will slow-down or not.
On the other hand, altruistic AVs can work together and
guide the traffic on the highway, e.g., by slowing down the
vehicles behind as AV3 does in Figure 1(b), in order to enable
a seamless and safe merging. Such altruistic autonomous
agents can create societally desirable outcomes in conflictive
driving scenarios, without relying on or making assumptions
about the behavior of human drivers.

Altruistic behavior of autonomous cars can be formalized
by quantifying the willingness of each vehicle to incorporate
the utility of others, whether an HV or an AV, into its
local utility function. This notion is defined as social value
orientation (SVO), which has recently been adopted from the
psychology literature to robotics and artificial intelligence re-
search [3]. SVO determines the degree to which an agent acts
egoistic or altruistic in the presence of others. Figure 1(b)
demonstrates an example of altruistic behavior by AVs where
they create a safe corridor for the merging HV and enable
a seamless merging. In a mixed-autonomy scenario, agents
either are homogeneous with the same SVO or can directly
obtain each other’s SVO (via V2V). However, the utility and
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SVO of an HV are unknowns, as they are subjective and
inconstant and therefore cannot be communicated to the AVs.

The existing social navigation works model a human
driver’s SVO either by predicting their behavior [4] and
avoiding conflicts with them or relying on the assumption
that humans are naturally willing or can be incentivized
to cooperate [5]. By explicitly modeling human behavior,
agents can exploit cooperation opportunities in order to
achieve a social goal that favors both humans and au-
tonomous agents. However, modeling human behaviors is
often challenging due to time-varying changes in the model
affected by fatigue, distraction, and stress as well as scalabil-
ity of belief modeling techniques over other agent’s behav-
iors, hence limiting the practicality of the above approach.
Methods based on model-predictive control (MPC) generally
require an engineered cost function and a centralized coor-
dinator [6]. As such, they are not suitable for cooperative
autonomous driving, where central coordination is not viable.
On the other hand, data-driven solutions such as reinforce-
ment learning are challenged in mixed-autonomy multi-agent
systems, mainly due to the non-stationary environment in
which agents are evolving concurrently.

Considering these shortcomings, the notion of altruism
in AVs can be divided into cooperation within autonomous
agents and sympathy among autonomous agents and human
drivers. Dissociating the two components helps us to sepa-
rately probe their influence on achieving a social goal. Our
key insight is that defining a social utility function can induce
altruism in decentralized autonomous agents and incentivize
them to cooperate with each other and to sympathize with
human drivers with no explicit coordination or information
about the humans’ SVO. The core differentiating idea that
we rely on is that AVs trained to reach an optimal solution
for all vehicles, learn to implicitly model the decision-
making process of humans only from experience. We study
the behavior of altruistic AVs in scenarios that would turn
into safety threats if either of sympathy and cooperation
components is absent. In other words, we perform our
experiments in scenarios with a similar nature to the one
depicted in Figure 1 that essentially require all agents to
work together and success cannot be achieved by any of
them individually. Our main contributions are as follows:

• We propose a data-driven framework, Sympathetic Co-
operative Driving (SymCoDrive), that incorporates a
decentralized reward structure to model cooperation
and sympathy and employ a 3D convolutional deep
reinforcement learning (DRL) architecture to capture
the temporal information in driving data,

• We demonstrate how tuning the level of altruism in AVs
leads to different emerging behaviors and affects the
traffic flow and driving safety,

• We experiment with a highway merging scenario and
demonstrate that our approach results in improved driv-
ing safety and societally desirable behaviors compared
to egoistic autonomous agents.

II. RELATED WORK

Multi-agent Reinforcement Learning. A major challenge
for multi-agent reinforcement learning (MARL) is the in-
herent non-stationarity of the environment. Foerster et al.
suggest a novel learning rule to address this issue [7].
Additionally, the idea of decorrelating training samples by
drawing them from an experience replay buffer becomes
obsolete and a multi-agent derivation of importance sampling
can be employed to remove the outdated samples from the re-
play buffer [8]. Xie et al. have also attempted to mitigate this
problem by using latent representations of partner strategies
to enable a more scalable MARL and partner modeling [9].

The counterfactual multi-agent (COMA) algorithm pro-
posed by Foerster et al. uses a centralized critic and de-
centralized actors to tackle the problem of credit assignment
in multi-agent environments [10]. In the case of centralized
control, deep Q-networks with full observability over the
environment can be used to control the joint-actions of a
group of agents [11]. Within the context of mixed-autonomy,
the existing literature focuses on solving cooperative and
competitive problems by making assumptions on the nature
of interactions between autonomous agents (or autonomous
agents and humans) [12]. Contrary to these works, we
assume partial observability and a decentralized reward func-
tion and aim to train sympathetic cooperative autonomous
agents with no assumption on humans’ behavior.

Autonomous Driving in Mixed-autonomy. Driving styles
of humans can be learned from demonstration through in-
verse RL or employing statistical models [5], [13], [14].
Modeling human driver behavior assists autonomous vehicles
to identify potentials for creating cooperation and interaction
opportunities with humans in order to realize safe and
efficient navigation [15]. Moreover, human drivers are able
to intuitively anticipate next actions of neighboring vehicles
through observing slight changes in their trajectories and
leverage the prediction to move proactively if required.
Inspired by this fact, Sadigh et al. reveal how autonomous
vehicles can exploit this farsighted behavior of humans to
shape and affect their actions [5]. On a macro-traffic level,
prior works have demonstrated emerging human behaviors
within mixed-autonomy scenarios and studied how these
patterns can be utilized to control and stabilize the traffic
flow [16], [17]. Closely related to our topic, recent works
in social robot navigation have shown the potential for col-
laborative planning and interaction with humans as well [4],
[18], [19].

III. PRELIMINARIES

Partially Observable Stochastic Games (POSG). We
formulate the problem of multi-vehicle interaction us-
ing a stochastic game defined by the tuple MG :=
(I,S, [Ai], [Oi], P, [ri]) for i = 1, . . . , N , in which I is a
finite set of agents and S represents the state-space including
all possible formations that the N agents can adopt. At a
given time the agent receives a local observation oi : S → Oi
and takes an action within the action-space ai ∈ Ai based on
a stochastic policy πi : Oi ×Ai → [0, 1]. Consequently, the



agent transits to a new state s′i which is determined based on
the state transition function Pr(s′|s, a) : S×A1×...×AN →
S and receives a reward ri : S × Ai → R. The goal is to
derive an optimal policy π∗ that maximizes the discounted
sum of future rewards over an infinite time horizon.

In a partially-observable stochastic game (POSG), the
state transition and reward functions are usually not known
and an agent only has access to a local observation which
is correlated with the state. Employing multi-agent rein-
forcement learning, independent MARL agents can work
together to overcome the physical limitations of a single
agent and outperform them [20]. In a multi-vehicle problem,
controlling vehicles by a centralized MARL controller that
has full observability over the environment and assigns a
centralized joint reward (∀i, j : ri ≡ rj) to all vehicles is
rather straightforward. However, such assumptions are not
feasible in real-world autonomous driving applications and
we rather focus on the decentralized case where vehicles
have partial observability and are not aware of each other’s
actions. Coordination among agents in such settings is ex-
pected to arise from the decentralized reward function that
we introduce which uses the local observations to estimate
the utility of other vehicles.
Deep Q-networks (DQN). Q-learning, which has been
widely applied in reinforcement learning problems with
large state-spaces, defines a state-value function Qπ(s, a) :=
E[
∑∞
i=1 γ

ir(si, π(si))|s0 = s, a0 = a] to derive the optimal
policy π∗(s) = argmaxaQ

∗(s, a) where γ ∈ [0, 1) is
a discount factor. DQN [21] uses a neural network with
weights w to estimate the state-action value function by
performing mini-batch gradient descent steps as wi+1 =
wi + αi∇̂wL(wi), where the loss function is defined as

L(wi) = E[(r + γ max
a

Q∗(s′, a′;w◦)−Q∗(s, a;w)2] (1)

and the ∇̂w operator is an estimate of the gradient at wi
and w◦ is the target network’s weights which get updated
periodically in training. Sets of (s, a, r, s′) are randomly
drawn from an experience replay buffer to de-correlate the
training samples in Equation (1). This mechanism becomes
problematic when agents’ policies evolve during the training.

IV. SYMPATHETIC COOPERATIVE DRIVING

Highway Merging Scenario. Our base scenario is a
highway merging ramp where a merging vehicle (either HV
or AV) attempts to join a mixed platoon of HVs and AVs, as
illustrated in Figure 1. We specifically choose this scenario
due to its inherent competitive nature, since the local utility
of the merging vehicle is conflictive with that of the cruising
vehicles. We ensure that only one AV yielding to the merging
vehicle will not make the merge possible and for it to happen,
essentially all AVs require to work together. In Figure 1(b),
AV3 must slow down and guide the vehicles in behind, which
perhaps are not able to see the merging vehicle, while AV2
and AV1 speed-up to open space for the merging vehicle. If
any of the vehicles do not cooperate or act selfishly, traffic
safety and efficiency will be compromised.

Formalism. Consider a road section as shown in Figure 1
with a set of autonomous vehicles I, a set of human-
driven vehicles V , and a mission vehicle, M ∈ I ∪ V
that can be either AV or HV and is attempting to merge
into the highway. HVs normally have a limited perception
range restricted by occlusion and obstacles. In the case of
AVs, although we assume no explicit coordination and no
information about the actions of the others, autonomous
agents are connected through V2V communication which
allows them to share their situational awareness. Leveraging
this extended situational awareness, agents can broaden their
range of perception and overcome occlusion and line-of-
sight visibility limitations. Therefore, while each AV has a
unique partial observation of the environment, they can see
all vehicles within their extended perception range, i.e., they
can see a subset of AVs Ĩ ⊂ I, and a subset of HVs Ṽ ⊂ V .

In order to model a mixed-autonomy scenario, we deploy
a mixed group of HVs and AVs to cruise on a highway
and target to maximize their speed while maintaining safety.
The contrast between humans and autonomous agents is that
humans are solely concerned about their own safety while
the altruistic autonomous agents attempt to optimize for the
safety and efficiency of the group. Social value orientation
gauges the level of altruism in an agent’s behavior. In order
to systematically study the interaction between agents and
humans, we decouple the notion of sympathy and coopera-
tion in SVO. Specifically, we consider the altruistic behavior
of an agent with humans as sympathy and refer to the
altruistic behavior among agents themselves as cooperation.
One rationale behind this definition is the fact that the two are
different in nature as the sympathetic behavior can be one-
sided when humans are not necessarily willing to help the
agents. Cooperation, however, is a symmetric quality since
the same policy is deployed in all AVs and as we will see
in our experiments, social goal of the group can be achieved
regardless of the humans’ willingness to cooperate.

Decentralized Reward Structure. The local reward re-
ceived by agent Ii ∈ I can be decomposed to

Ri(si, ai) = RE +RC +RS

= λErEi (si, ai)+

λC
∑
j

rCi,j(si, ai) + λS
∑
k

rSi,k(si, ai)
(2)

in which j ∈ Ĩ \ {Ii}, k ∈ (Ṽ ∪ {M}) \ (I ∩ {M}). The
level of altruism or egoism can be tuned by λE , λC , and λS

coefficients. The rEi component in Equation (2) denotes the
local driving performance reward derived from metrics such
as distance traveled, average speed, and a negative cost for
changes in acceleration to promote a smooth and efficient
movement by the vehicle. The cooperative reward term, rCi,j
accounts for the utility of the observer agent’s allies, i.e.,
other AVs in the perception range except for Ii. It is im-
portant to note that Ii only requires the V2V information to
compute RC and not any explicit coordination or knowledge
of the actions of the other agents. The sympathetic reward



Fig. 2: Multi-channel VelocityMap state representation embeds the
speed of the vehicle in pixel values.

term, rSi,k is defined as

rSi,k = rMk +
∑
k

1

ηdψi,k
uk, (3)

where uk denotes an HV’s utility, e.g., its speed, di,k is the
distance between the observer autonomous agent and the HV,
and η and ψ are dimensionless coefficients. Moreover, the
sparse scenario-specific mission reward term rMk in the case
of our driving scenario is representing the success or failure
of the merging maneuver, formally

rMk =

{
1, if Vk is the mission vehicle and has merged
0, o.w.

(4)
During training, each agent optimizes for this decentral-

ized reward function using Deep RL and learns to drive on
the highway and work with its allies to create societally
desirable formations that benefits both AVs and HVs.

State-space and Action-space. The robot navigation prob-
lem can be viewed from multiple levels of abstraction: from
the low-level continuous control problem to the higher level
meta-action planning. Our purpose in this work is to study
the inter-agent and agent-human interactions as well as the
behavioral aspects of mixed-autonomy driving. Thus, we
choose a more abstract level and define the action-space as
a set of discrete meta-actions ai ∈ Rn.

We experiment with two different local state representa-
tions to find the most suitable one for our problem. The
multi-channel VelocityMap representation separates AVs and
HVs into two channels and embeds their relative speed in the
pixel values. Figure 2 illustrates an example of this multi-
channel representation. A clipped logarithmic function is
used to map the relative speed of the vehicles into pixel
values as it showed a better performance compared to the
linear mapping, i.e.,

Zj = 1− β log(α|v(l)j |)1(|v
(l)
j | − v0) (5)

where Zj is the pixel value of the jth vehicle in the state
representation, v(l) is its relative Frenet longitudinal speed
from the kth vehicle’s point-of-view, i.e., l̇j− ˙lk, v0 is speed
threshold, α and β are dimensionless coefficients, and 1(.) is
the Heaviside step function. Such non-linear mapping gives
more importance to neighboring vehicles with smaller |v(l)|
and almost disregards the ones that are moving either much

Fig. 3: Our deep Q-network with 3D Convolutional Architecture.

faster or much slower than the ego. We add three more
channels that embed 1) the road layout, 2) an attention map
to emphasize on the location of the ego, and 3) the mission
vehicle.

The other candidate is an occupancy grid representation
that directly embeds the information as elements of a 3-
dimensional tensor oi ∈ Oi. Theoretically, this representation
is very similar to the previous VelocityMap and what con-
trasts them is that the occupancy grid removes the shapes
and visual features such as edges and corners and directly
feeds the network with sparse numbers. More specifically,
consider a tensor of size W × H × F , in which the nth
channel is a W ×H matrix defined as

o(n, , ) ∈ R2 =

{
f(n), if f(1) = 1

0, o.w.
(6)

where f = [p, l, d, v(l), v(d), sin δ, cos δ] is the feature set, p
is a binary variable showing the presence of a vehicle, l and
d are relative Frenet coordinates, v(l) and v(d) are relative
Frenet speeds, and δ is the yaw angle measured with respect
to a global reference.
Training with Deep MARL. We experiment with 3 existing
architectures proposed in the literature by Toghi et al.,
Mnih et al., and Egorov et al. as function approximators
for our Q-learning problem [11], [21], [22]. Additionally,
we implemented a 3D convolutional network that captures
the temporal dependencies in a training episode as shown
in Figure 3. The input to our network is a stack of 10
VelocityMap observations, i.e., a 10× (4×512×64) tensor,
which capture the last 10 time-steps in the episode. The
performance of the architectures is compared in Section V-G.

We train a single neural network offline and deploy the
learned policy into all agents for distributed independent
execution in real-time. In order to cope with the non-
stationarity issue in MARL, agents are trained in a semi-
sequential manner, as illustrated in Figure 4. Each agent
is trained separately for k episodes while the policies of
its allies, w−, are frozen. The new policy, w+, is then
disseminated to all agents to update their neural networks.
Additionally, inspired by [23], we employ a novel experience
replay mechanism to compensate for our highly skewed
training data. A training episode can be semantically divided
into two sections, cruising on a straight highway and highway



Fig. 4: The multi-agent training and policy dissemination process.

merging. The ratio of the latter to the former in the experi-
ence replay buffer is a small number since the latter occurs
in only a short time period of each episode. Consequently,
uniformly sampling from the experience replay buffer leads
to too few training samples relating to highway merging.
Instead, we set the probability of a sample being drawn
from the buffer proportional to its last resulted reward and
its spatial distance with the merging point on the road.
Balancing skewed training datasets is a common practice in
computer vision and machine learning and appeared to be
beneficial in our MARL problem as well.

V. EXPERIMENTS

A. Driving Simulator Setup

We customize an OpenAI Gym environment [24] to sim-
ulate the highway driving and merging scenarios. In the
framework of our simulator, a Kinematic Bicycle Model
describes the motion of the vehicles and a closed-loop pro-
portional–integral–derivative (PID) controller is employed
for translating the meta-actions to low-level steering and
acceleration control signals. Particularly, we choose a set
of n = 5 abstract actions as ai ∈ Ai = [Lane Left,
Idle, Lane Right, Accelerate, Decelerate]T . As
a common practice in the autonomous driving space, we
express road segments and vehicles’ motion in the Frenet-
Serret coordinate frame which helps us to take the road
curvature out of our equations and break-down the control
problem to lateral and longitudinal components. In our
simulated environment, the behavior of HVs is governed by
lateral and longitudinal driver models proposed by Treiber
et al. and Kesting et al [25], [26].

In order to ensure the generalization capability of our
learned policies, we draw the initial position of all vehicles
from a clipped Gaussian distribution with mean and variance
tuned to ensure that the initialized simulations fall into our
desired merging scenario configuration. We further random-
ize the speed and initial position of the vehicles during the
testing phase to probe the agents’ ability to handle unseen
and more challenging cases.

B. Computational Details

A single training iteration in the PyTorch implementation
of SymCoDrive takes about 440ms using a NVIDIA Tesla
V100 GPU and a Xeon 6126 CPU @ 2.60GHz. We have
repeated the training process multiple times to ensure all runs
converge to similar emerging behaviors and policy. Training
the Conv3D network for 15,000 episodes took approximately

33 hours on our hardware. The policy execution frequency is
set to 1Hz and an online query of the network in the testing
phase takes approximately 10ms. We spent ∼4,650 GPU-
hours to tune the neural networks and reward coefficients
for the purpose of our experiments.

C. Independent Variables

We conducted a set of experiments to study how sympathy
and cooperation components of the reward function impact
the behavior of autonomous agents and the overall safety/
efficiency metrics. We compare the case in which the mis-
sion vehicle—merging vehicle in the example in Fig. 1—is
autonomous to its dual scenario with a human-driven mission
vehicle. We define 2x4 settings, in which the mission vehicle
is either an AV or HV, and the other autonomous agents
follow an egoistic, cooperative-only, sympathetic-only, or
sympathetic cooperative objectives:

• HV+E. The mission vehicle is human-driven and
autonomous agents act egoistically,

• HV+C. The mission vehicle is human-driven and
autonomous agents only have a cooperation component
(RC) in their reward,

• HV+S. The mission vehicle is human-driven and au-
tonomous agents only have the sympathy (RS) element,

• HV+SC. The mission vehicle is human-driven and
autonomous agents have both sympathy (RS) and co-
operation (RC) components in their reward,

• AV+E/C/S/SC. Similar to the cases above with the
difference of mission vehicle being autonomous.

D. Dependent Measures

Performance of our experiments can be gauged in terms
of efficiency and safety. The average distance traveled by
each vehicle within the duration of a simulation episode is
a traffic-level measure for efficiency. The percentage of the
episodes that experienced a crash indicates the safety of the
policy. Counting the number of scenarios with no crashes
and successful missions (merging to the highway) gives us
an idea about our solution’s overall efficacy.

E. Hypotheses

We examine three key hypotheses:

• H1. In the absence of both cooperation and sympathy,
a HV will not be able to safely merge into the highway.
Thus, we anticipate to witness a better performance in
HV+SC compared to HV+C and HV+E.

• H2. An autonomous mission vehicle only requires al-
truism from its allies to successfully merge. We do not
expect to see a significant difference between AV+SC
and AV+C scenarios; however, we hypothesize that they
both will outperform AV+E.

• H3. Tuning the level of altruism in agents leads to dif-
ferent emerging behaviors that contrast in their impact
on efficiency and safety. Increasing the level of altruism
can become self-defeating as it jeopardizes the agent’s
ability to learn the basic driving skills.



Fig. 5: Comparison between egoistic, cooperative-only, and sympathetic cooperative autonomous agents and how they interact with an
autonomous (top) or human-driven (bottom) mission vehicle. A set of sampled mission vehicle’s trajectories are illustrated on the left-side,
relating to each of the 6 experiment setups defined in Section V-C.

F. Results
We train SymCoDrive agents for 15,000 episodes in ran-

domly initialized scenarios with a small standard deviation
and average the performance metrics over 3,000 test episodes
with 4x larger initialization range to ensure that our agents
are not over-fitting on the seen training episodes.

1) Cooperation & Sympathy: To examine our hypothesis
H1, we focus on scenarios with a human-driven mission
vehicle, i.e., HV+E, HV+C, and HV+SC. The bottom row in
Figure 5 illustrates our observations for these scenarios. It is
evident that agents that integrate cooperation and sympathy
elements (SC) in their reward functions show superior per-
formance compared to solely cooperative (C) or egoistic (E)
agents. This insight is also reflected in the bar plots that mea-
sure the average distance traveled by vehicles on the bottom
right-most side. As a result of fair and efficient traffic flow,
vehicles in the HV+SC scenario clearly succeed to travel a
longer distance whereas in the HV+C and HV+E scenarios
failed merging attempts and possible crashes deteriorate the
performance. The left-most column in Figure 5 visualizes a
set of sampled mission vehicle trajectories. It is clear that
in the majority of episodes, cooperative sympathetic agents
successfully merge to the highway while the other (C) and
(E) agents fail in most of their attempts. Figure 6 provides
further intuition on our discussion by comparing a set of
mission vehicle’s trajectories extracted from a HV+E sce-
nario to the trajectories from the HV+SC scenario. Evidently,
cooperative sympathetic agents enable successful merging
while the other egoistic and solely-cooperative agents fail
to do so, supporting our hypothesis H1.

It is imperative to repeat the experiments above for
scenarios with an autonomous mission vehicle as one can
argue that the failed missions and crashes in HV+C and
HV+E are due to inadequacy of the driver model we have
chosen for HVs. To precisely address this argument, AV+E,
AV+C, and AV+SC scenarios are illustrated in the top row
of Figure 5. First, a comparison between two scenarios
with egoistic agents, i.e., AV+E and HV+E, unveils that
an autonomous mission vehicle acts more creatively and
explores different ways of merging to the highway, hence

the more spread trajectory samples in AV+E compared to
HV+E. Next, comparing the performance of an egoistic
autonomous mission vehicle with a human-driven mission
vehicle in terms of crashes and failed merges shows the
autonomous agent is generally more capable to find a way
to merge into the platoon of humans and egoistic agents.
However, it still fails in more than half of its merging
attempts. Figure 5 verifies our hypothesis H2 as we can
observe that adding only a cooperation component to the
agents, i.e., AV+C scenario, enables the mission vehicle to
merge to the highway almost in all of its attempts. Adding
the sympathy element in AV+SC slightly improves the safety
as it incentivizes the agents to be aware of the humans that
are not in the direct risk of collision with them. We consider
cooperation as an enabler for sympathy and did not conduct
any experiment with sympathetic-only setting as its results
can be inferred from a comparison between (SC) and (C).

2) Tuning Altruism & Emerging Behaviors: To investigate
hypothesis H3, we train a set of agents and vary their
reward coefficients, i.e., λE , λC , λS , to adjust their level of
sympathy and cooperation. Revisiting our driving scenario
depicted in Figure 1, we particularly witness two critical
emerging behaviors in agents. Strongly sympathetic agents
that are trained with a high ratio of λS/(λC+λE), naturally
prioritize the benefit of humans over their own. Figure 7
shows a set of snapshots extracted from two scenarios

Fig. 6: A set of sample trajectories of the merging vehicle shows
mostly successful merging attempts in HV+SC, compared to the
failed attempts in HV+E.



Fig. 7: Comparing weakly and strongly sympathetic autonomous
agents: (left) Speed profiles of the ”guide AV” (consider AV3 in
Figure 1(b)) and (right) Sample snapshots.

with strongly sympathetic and weakly sympathetic agents.
A strongly sympathetic agent (consider AV3 in Figure 1(b))
slows down and blocks the group of vehicles behind it to
ensure that the mission vehicle gets a safe pathway to merge.
On the other hand, the weakly sympathetic agent initially
brakes to slow down the group of the vehicles behind it
and then prioritizes its own benefit, speeds up, and passes
the mission vehicle. Although both behaviors enable the
mission vehicle to successfully merge, the speed profiles
of the agent in Figure 7 depict how a strongly sympathetic
agent compromises on its traveled distance (the area under
the speed curve) to maximize the mission vehicle’s safety.
Motivated by this observation, we thoroughly studied the ef-
fect that tuning the reward coefficients in Equation (2) makes
on the performance of SymCoDrive agents. As illustrated
in Figure 8, we empirically observe that an optimal point
between caring about others and being selfish exists that
eventually benefits all the vehicles in the group.
G. Deep Networks and Generalization

We trained the network architectures introduced in Sec-
tion IV and examined their ability in generalizing to test
episodes with 4× wider range of initialization randomness,

Fig. 8: Tuning SVO for autonomous agents reveals that an optimal
point between caring about others and being selfish exists that
eventually benefits all the vehicles in the group.

Fig. 9: Training performance of the three benchmark network
architectures.

figure 9 shows the training performance of the networks.
When tested in episodes with the same range of initialization
randomness as training, all networks showed acceptable per-
formance. However, their performance quickly depreciated
when the range of randomness was increased and agents
faced episodes different than what they had seen during
the training, as noted in Table I. While the other networks
over-fitted on the training episodes, our Conv3D architecture
significantly outperformed them in the more diverse test
scenarios. We conclude that using VelocityMaps and our
Conv3D architecture, agents learn to handle more complex
unseen driving scenarios. Table II lists the hyper-parameters
we have used to train our Conv3D architecture.

The Occupancy Grid state-space representation, defined
in Equation (6) showed an inferior performance in all neural
network architectures compared to the VelocityMap repre-
sentation in our particular driving problem. We speculate
that this is due to the fact that the Occupancy Grid rep-
resentation does not benefit from the road layout and visual
cues embedded in the VelocityMap state representation. All
of our experiments discussed earlier are performed with
VelocityMap representation, unless stated otherwise. After
tuning the VelocityMaps, we concluded that integrating a
hard ego-attention map in the state representation did not
make a significant enhancement and decided to drop this
channel, reducing the number of channels to 4. Instead, we
aligned the center of VelocityMaps with regards to the ego
such that 30% of the observation frame reflects the range
behind the ego and the rest shows the range in front. We
noticed that this parameter plays an important role in training
convergence and the resulted behaviors as it enables the agent
to see the mission vehicle and other vehicles before they get
to its close proximity.

VI. CONCLUDING REMARKS

Summary. We tackle the problem of autonomous driving in
mixed-autonomy environments where autonomous vehicles
interact with vehicles driven by humans. We incorporate a
cooperative sympathetic reward structure into our MARL
framework and train agents that cooperate with each other,
sympathize with human-driven vehicles, and consequently
demonstrate superior performance in competitive driving
scenarios, such as highway merging, compared to egoistically
trained agents.



TABLE I: Performance comparison of related architectures. Our Conv3D architecture outperformed the others as the level of randomness
increases and agents face episodes different than what they had seen during the training.

Low Randomness Medium Randomness High Randomness
Models C (%) MF (%) DT (m) C (%) MF (%) DT (m) C (%) MF (%) DT (m)

Toghi et al. [22] 6.2 0 288 65.2 65.2 304 78.9 31.4 212
Mnih et al. [21] 9.6 7.2 350 41.2 41.2 240 12.9 10.8 344

Egorov et al. [11] 19.7 9.0 312 7.3 1.7 366 18.9 8.4 313

Conv3D (Ours) 3.3 0.2 334 2.4 0.4 373 4.8 1.0 351

C: Crashed, MF: Merging Failed, DT: Distance Travelled

TABLE II: List of hyper-parameters of our Conv3D Q-Network

Hyper-param Value Hyper-param Value
Training iterations 720,000 Initial exploration 1.0

Batch size 32 Final exploration 0.1
Replay buffer size 10,000 ε decay Linear

Learning rate 0.0005 Optimizer ADAM
Target network update 200 Discount factor γ 0.95

Limitations and Future Work. Our current reward struc-
ture includes a hand-crafted marker that depends on the
driving scenario, e.g., merging or exiting a highway. Given
diverse driving episodes, this marker can also be learned
from interaction data, cutting the need for a mission-specific
reward term. We believe the merging scenario is represen-
tative of many common interaction scenarios we observe
including other behaviors that require the two agents regu-
lating their speeds and coordinating with each other such as
exiting a highway. We have only experimented with training
and testing agents in the same scenario and have not cross-
validated them across different scenarios. We hope to extend
this work to other scenarios in the future. We believe, given
a large enough training data, an agent is expected to learn
the same altruistic behavior in general driving scenarios.
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