Source code for pantheonrl.algos.modular.policies

"""
Implementation of the policy for the ModularAlgorithm
"""
# pylint: disable=locally-disabled, no-value-for-parameter, unexpected-keyword-arg
from typing import Union, Type, Dict, List, Tuple, Optional, Any, Callable
from functools import partial

import gymnasium as gym
import torch
from torch import nn
import numpy as np

from stable_baselines3.common.torch_layers import (
    FlattenExtractor,
    BaseFeaturesExtractor,
    MlpExtractor,
)
from stable_baselines3.common.distributions import (
    make_proba_distribution,
    Distribution,
    DiagGaussianDistribution,
    CategoricalDistribution,
    MultiCategoricalDistribution,
    BernoulliDistribution,
    StateDependentNoiseDistribution,
)
from stable_baselines3.common.policies import BasePolicy


[docs] class ModularPolicy(BasePolicy): """ Policy class for actor-critic algorithms (has both policy and value prediction). Used by A2C, PPO and the likes. :param observation_space: (gym.spaces.Space) Observation space :param action_space: (gym.spaces.Space) Action space :param lr_schedule: (Callable) Learning rate schedule (could be constant) :param net_arch: ([int or dict]) The specification of the policy and value networks. :param device: (str or torch.device) Device on which the code should run. :param activation_fn: (Type[nn.Module]) Activation function :param ortho_init: (bool) Whether to use or not orthogonal initialization :param use_sde: (bool) Whether to use State Dependent Exploration or not :param log_std_init: (float) Initial value for the log standard deviation :param full_std: (bool) Whether to use (n_features x n_actions) parameters for the std instead of only (n_features,) when using gSDE :param sde_net_arch: ([int]) Network architecture for extracting features when using gSDE. If None, the latent features from the policy will be used. Pass an empty list to use the states as features. :param use_expln: (bool) Use ``expln()`` function instead of ``exp()`` to ensure a positive standard deviation (cf paper). It allows to keep variance above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough. :param squash_output: (bool) Whether to squash the output using a tanh function, this allows to ensure boundaries when using gSDE. :param features_extractor_class: (Type[BaseFeaturesExtractor]) Features extractor to use. :param features_extractor_kwargs: (Optional[Dict[str, Any]]) Keyword arguments to pass to the feature extractor. :param normalize_images: (bool) Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: (Type[torch.optim.Optimizer]) The optimizer to use, ``torch.optim.Adam`` by default :param optimizer_kwargs: (Optional[Dict[str, Any]]) Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, lr_schedule: Callable[[float], float], net_arch: Optional[List[Union[int, Dict[str, List[int]]]]] = None, activation_fn: Type[nn.Module] = nn.Tanh, ortho_init: bool = True, use_sde: bool = False, log_std_init: float = 0.0, full_std: bool = True, sde_net_arch: Optional[List[int]] = None, use_expln: bool = False, squash_output: bool = False, features_extractor_class: Type[ BaseFeaturesExtractor ] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[torch.optim.Optimizer] = torch.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, # my additional arguments num_partners: int = 1, partner_net_arch: Optional[ List[Union[int, Dict[str, List[int]]]] ] = None, # net arch for each partner-specific module baseline: bool = False, nomain: bool = False, ): if optimizer_kwargs is None: optimizer_kwargs = {} # Small values to avoid NaN in Adam optimizer if optimizer_class == torch.optim.Adam: optimizer_kwargs["eps"] = 1e-5 super().__init__( observation_space, action_space, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, squash_output=squash_output, ) self.num_partners = num_partners print("CUDA: ", torch.cuda.is_available()) if partner_net_arch is None: if features_extractor_class == FlattenExtractor: partner_net_arch = {"pi":[64, 64], "vf":[64, 64]} else: partner_net_arch = [] self.partner_net_arch = partner_net_arch self.baseline = baseline self.nomain = nomain # Default network architecture, from stable-baselines if net_arch is None: if features_extractor_class == FlattenExtractor: net_arch = {"pi":[64, 64], "vf":[64, 64]} else: net_arch = [] self.value_net = None self.log_std = None self.action_net = None self.mlp_extractor = None self.net_arch = net_arch self.activation_fn = activation_fn self.ortho_init = ortho_init self.features_extractor = features_extractor_class( self.observation_space, **self.features_extractor_kwargs ) self.features_dim = self.features_extractor.features_dim self.normalize_images = normalize_images self.log_std_init = log_std_init dist_kwargs = None # Keyword arguments for gSDE distribution if use_sde: dist_kwargs = { "full_std": full_std, "squash_output": squash_output, "use_expln": use_expln, "learn_features": sde_net_arch is not None, } self.sde_features_extractor = None self.sde_net_arch = sde_net_arch self.use_sde = use_sde self.dist_kwargs = dist_kwargs # Action distribution self.action_dist = make_proba_distribution( action_space, use_sde=use_sde, dist_kwargs=dist_kwargs ) self.lr_schedule = lr_schedule self._build(self.lr_schedule)
[docs] def set_freeze_module(self, module, freeze): """ freeze / unfreeze the module networks """ for param in module.parameters(): param.requires_grad = not freeze
[docs] def set_freeze_main(self, freeze): """ freeze / unfreeze main modules """ self.set_freeze_module(self.mlp_extractor, freeze) self.set_freeze_module(self.action_net, freeze) self.set_freeze_module(self.value_net, freeze)
[docs] def set_freeze_partner(self, freeze): """ freeze / unfreeze partner modules """ for partner_idx in range(self.num_partners): self.set_freeze_module( self.partner_mlp_extractor[partner_idx], freeze ) self.set_freeze_module( self.partner_action_net[partner_idx], freeze ) self.set_freeze_module(self.partner_value_net[partner_idx], freeze)
[docs] def make_action_dist_net( self, latent_dim_pi: int, latent_sde_dim: int = 0 ): """ Make the action distribution network """ action_net, log_std = None, None if isinstance(self.action_dist, DiagGaussianDistribution): action_net, log_std = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi, log_std_init=self.log_std_init ) elif isinstance(self.action_dist, StateDependentNoiseDistribution): latent_sde_dim = ( latent_dim_pi if self.sde_net_arch is None else latent_sde_dim ) action_net, log_std = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi, log_std_init=self.log_std_init, ) elif isinstance(self.action_dist, CategoricalDistribution): action_net = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi ) elif isinstance(self.action_dist, MultiCategoricalDistribution): action_net = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi ) elif isinstance(self.action_dist, BernoulliDistribution): action_net = self.action_dist.proba_distribution_net( latent_dim=latent_dim_pi ) else: raise NotImplementedError( f"Unsupported distribution '{self.action_dist}'." ) return action_net, log_std
[docs] def build_mlp_action_value_net(self, input_dim, net_arch): """ Build the action and value networks """ mlp_extractor = MlpExtractor( input_dim, net_arch=net_arch, activation_fn=self.activation_fn, device=self.device, ) action_net, log_std = self.make_action_dist_net( mlp_extractor.latent_dim_pi ) value_net = nn.Linear(mlp_extractor.latent_dim_vf, 1) return mlp_extractor, action_net, log_std, value_net
[docs] def do_init_weights(self, init_main=False, init_partner=False): """ Initialize the weights """ # Values from stable-baselines. # feature_extractor/mlp values are # originally from openai/baselines (default gains/init_scales). # # Init weights: use orthogonal initialization # # with small initial weight for the output # if self.ortho_init: module_gains = {} if init_main: module_gains[self.features_extractor] = np.sqrt(2) module_gains[self.mlp_extractor] = np.sqrt(2) module_gains[self.action_net] = 0.01 module_gains[self.value_net] = 1 if init_partner: for i in range(self.num_partners): module_gains[self.partner_mlp_extractor[i]] = np.sqrt(2) module_gains[self.partner_action_net[i]] = 0.01 module_gains[self.partner_value_net[i]] = 1 for module, gain in module_gains.items(): module.apply(partial(self.init_weights, gain=gain))
def _build(self, lr_schedule: Callable[[float], float]) -> None: """ Create the networks and the optimizer. :param lr_schedule: (Callable) Learning rate schedule lr_schedule(1) is the initial learning rate """ # Note: If net_arch is None and some features extractor is used, # net_arch here is an empty list and mlp_extractor does not # really contain any layers (acts like an identity module). ( self.mlp_extractor, self.action_net, self.log_std, self.value_net, ) = self.build_mlp_action_value_net( input_dim=self.features_dim, net_arch=self.net_arch ) partner_builds = [ self.build_mlp_action_value_net( input_dim=self.mlp_extractor.latent_dim_pi, net_arch=self.partner_net_arch, ) for _ in range(self.num_partners) ] if self.baseline: # use the same partner module for all partners print("Baseline architecture: using the same partner module.") partner_builds = [partner_builds[0]] * self.num_partners ( self.partner_mlp_extractor, self.partner_action_net, self.partner_log_std, self.partner_value_net, ) = zip(*partner_builds) self.partner_mlp_extractor = nn.ModuleList(self.partner_mlp_extractor) self.partner_action_net = nn.ModuleList(self.partner_action_net) self.partner_value_net = nn.ModuleList(self.partner_value_net) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class( self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs ) self.do_init_weights(init_main=True, init_partner=True)
[docs] def overwrite_main(self, other): """ Overwrite the main weights """ self.mlp_extractor, self.action_net, self.log_std, self.value_net = ( other.mlp_extractor, other.action_net, other.log_std, other.value_net, ) self.optimizer = self.optimizer_class( self.parameters(), lr=self.lr_schedule(1), **self.optimizer_kwargs )
[docs] def forward( self, obs: torch.Tensor, partner_idx: int, deterministic: bool = False ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: (torch.Tensor) Observation :param deterministic: (bool) Whether to sample or use deterministic actions :return: (Tuple[torch.Tensor, torch.Tensor, torch.Tensor]) action, value and log probability of the action """ latent_pi, latent_vf, _ = self._get_latent(obs=obs) partner_latent_pi, partner_latent_vf = self.partner_mlp_extractor[ partner_idx ](latent_pi) distribution = self._get_action_dist_from_latent( latent_pi, partner_latent_pi, partner_idx=partner_idx ) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) + self.partner_value_net[ partner_idx ](partner_latent_vf) return actions, values, log_prob
def _get_latent( self, obs: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Get the latent code (i.e., activations of the last layer of each network) for the different networks. :param obs: (torch.Tensor) Observation :return: (Tuple[torch.Tensor, torch.Tensor, torch.Tensor]) Latent codes for the actor, the value function and for gSDE function """ # Preprocess the observation if needed features = self.extract_features(obs, self.features_extractor) latent_pi, latent_vf = self.mlp_extractor(features) # Features for sde latent_sde = latent_pi if self.sde_features_extractor is not None: latent_sde = self.sde_features_extractor(features) return latent_pi, latent_vf, latent_sde def _get_action_dist_from_latent( self, latent_pi: torch.Tensor, partner_latent_pi: torch.Tensor, partner_idx: int, latent_sde: Optional[torch.Tensor] = None, action_mask: Optional[torch.Tensor] = None, ) -> Distribution: """ Retrieve action distribution given the latent codes. :param latent_pi: (torch.Tensor) Latent code for the actor :param latent_sde: (Optional[torch.Tensor]) Latent code for the gSDE exploration function :return: (Distribution) Action distribution """ main_logits = self.action_net(latent_pi) partner_logits = self.partner_action_net[partner_idx]( partner_latent_pi ) if self.nomain: mean_actions = partner_logits else: mean_actions = main_logits + partner_logits large_exponent = 30 if action_mask is not None: action_mask = action_mask.to(mean_actions.device) mean_actions = mean_actions - large_exponent * (~action_mask) torch.clamp(mean_actions, min=-1 * large_exponent) if isinstance(self.action_dist, DiagGaussianDistribution): log_std = self.log_std + self.partner_log_std[partner_idx] return self.action_dist.proba_distribution(mean_actions, log_std) if isinstance(self.action_dist, CategoricalDistribution): # Here mean_actions are the logits before the softmax return self.action_dist.proba_distribution( mean_actions ) if isinstance(self.action_dist, MultiCategoricalDistribution): # Here mean_actions are the flattened logits return self.action_dist.proba_distribution( mean_actions ) if isinstance(self.action_dist, BernoulliDistribution): # Here mean_actions are the logits (before rounding to get the binary actions) return self.action_dist.proba_distribution( mean_actions ) if isinstance(self.action_dist, StateDependentNoiseDistribution): log_std = self.log_std + self.partner_log_std[partner_idx] return self.action_dist.proba_distribution( mean_actions=mean_actions, log_std=log_std, latent_sde=latent_sde ) raise ValueError("Invalid action distribution") def _predict( self, observation: torch.Tensor, deterministic: bool = False, partner_idx: int = 0, ) -> torch.Tensor: """ Get the action according to the policy for a given observation. :param observation: (torch.Tensor) :param deterministic: (bool) Whether to use stochastic or deterministic actions :return: (torch.Tensor) Taken action according to the policy """ actions, _, _ = self.forward( obs=observation, partner_idx=partner_idx, deterministic=deterministic, ) return actions
[docs] def evaluate_actions( self, obs: torch.Tensor, actions: torch.Tensor, partner_idx: int, action_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Evaluate actions according to the current policy, given the observations. :param obs: (torch.Tensor) :param actions: (torch.Tensor) :return: (torch.Tensor, torch.Tensor, torch.Tensor) estimated value, log likelihood of taking those actions and entropy of the action distribution. """ latent_pi, latent_vf, _ = self._get_latent(obs=obs) partner_latent_pi, partner_latent_vf = self.partner_mlp_extractor[ partner_idx ](latent_pi) distribution = self._get_action_dist_from_latent( latent_pi, partner_latent_pi, partner_idx=partner_idx, action_mask=action_mask, ) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) + self.partner_value_net[ partner_idx ](partner_latent_vf) return values, log_prob, distribution.entropy()
[docs] def get_action_logits_from_obs( self, obs: torch.Tensor, partner_idx: int, action_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Get the action logits from the observation """ latent_pi, _, _ = self._get_latent(obs=obs) partner_latent_pi, _ = self.partner_mlp_extractor[partner_idx]( latent_pi ) main_logits = self.action_net(latent_pi) partner_logits = self.partner_action_net[partner_idx]( partner_latent_pi ) if action_mask: main_logits = ( main_logits * action_mask ) # set masked out options to 0 partner_logits = partner_logits * action_mask return main_logits, partner_logits