
Autonomous Robots
https://doi.org/10.1007/s10514-021-10022-9

Dynamic multi-robot task allocation under uncertainty and temporal
constraints

Shushman Choudhury1 · Jayesh K. Gupta1 ·Mykel J. Kochenderfer1 · Dorsa Sadigh1 · Jeannette Bohg1

Received: 14 January 2021 / Accepted: 27 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Weconsider the problemof dynamically allocating tasks tomultiple agents under timewindow constraints and task completion
uncertainty. Our objective is to minimize the number of unsuccessful tasks at the end of the operation horizon. We present
a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under
uncertainty and multi-agent coordination, and addresses them in a hierarchical manner. The lower layer computes policies for
individual agents using dynamic programming with tree search, and the upper layer resolves conflicts in individual plans to
obtain a valid multi-agent allocation. Our algorithm, Stochastic Conflict-Based Allocation (SCoBA), is optimal in expectation
and complete under some reasonable assumptions. In practice, SCoBA is computationally efficient enough to interleave
planning and execution online. On the metric of successful task completion, SCoBA consistently outperforms a number of
baseline methods and shows strong competitive performance against an oracle with complete lookahead. It also scales well
with the number of tasks and agents. We validate our results over a wide range of simulations on two distinct domains:
multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.

Keywords Task allocation · Multi-robot systems · Hierarchical planning · Conflict-based search

1 Introduction

Efficient and high-quality task allocation is crucial for
modern cooperative multi-robot applications (Gerkey and
Mataric 2004). For warehouse logistics, teams of mobile
robots carry goods between assigned locations (Yan et al.
2012). Industrial and manufacturing operations involve
manipulators collaborating on assembly lines (Johannsmeier
and Haddadin 2016). On-demand ridesharing and delivery
services dispatch agents to incoming requests (Hyland and
Mahmassani 2018). Multi-robot task allocation needs to be
computationally efficient and produce high-quality solutions
under the challenges of real-world robotics: the uncertainty
of executing tasks successfully, temporal constraints such as
ordering and timewindows, and tasks dynamically appearing
online. For instance, in one of our simulation domains, a team

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Robotics: Science and Systems 2020.

B Shushman Choudhury
shushman@cs.stanford.edu

1 Department of Computer Science, Stanford University,
Stanford, CA 94305, USA

of robot arms pick objects that appear on a conveyor belt from
an external loading process and place them in bins (Fig. 1a).
With time window constraints induced by workspace limits
and uncertainty due to imperfect grasping, the arms attempt
to pick-and-place as many objects as possible.

Multi-robot task allocation is a difficult problem; it inher-
its the combinatorial optimization challenges of classical
allocation as well as the uncertainty and dynamic online
environments of robotics settings. Time-extended tasks and
time window constraints further require algorithms to plan
over horizons rather than instantaneously, and account for
spatio-temporal relationships among tasks (Gini 2017). The
robotics community has worked on multi-agent task alloca-
tion with Markov Decision Processes (Campbell et al. 2013)
and robust task matching (Liu and Shell 2011). The classic
multi-robot task allocation problem has been studied exten-
sively (Gerkey and Mataric 2004) and extended to account
for uncertainty (Mataric et al. 2003), temporal and ordering
constraints (Gini 2017), and dynamic task arrivals (Cordeau
and Laporte 2007). The operations research community has
developed methods that plan under task execution uncer-
tainty (Timotheou 2010; Rahmani and Heydari 2014) and
can efficiently recompute schedules online (O’Donovan et

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-021-10022-9&domain=pdf
http://orcid.org/0000-0003-4829-8806


Autonomous Robots

(a)

(b)

Fig. 1 The above domains motivate our multi-robot task allocation
approach. We allocate robots (arms or drones) to tasks (pick-and-place
or delivery) that arrive online. Task completion is subject to uncertainty
(grasping or flight time) and time window constraints

al. 1999). However, they have simplified agent models (flow
shops, job shops) that are unable to represent complex spatial
relationships between tasks.

The algorithmic challenges for our allocation setting
are sequential planning under uncertainty and coordinat-
ing multi-agent decisions. The prior works above typically
attempt the computationally intractable joint problem. Thus,
they require simplifying approximations or heuristics for
either multi-agent planning or coordination, such as ignor-
ing uncertainty or imposing arbitrary priority orderings on
agents.

Our key idea is to decouple the algorithmic challenges
and address them hierarchically in an efficient two-layer
approach. The lower layer plans for individual agents, using
dynamic programming on a policy tree to reason about
the uncertainty over task completion. The upper layer uses
optimal conflict resolution logic from the path planning
community to coordinate the multi-agent allocation deci-
sions (Sharon et al. 2012). Our overall algorithm, Stochastic
Conflict-Based Allocation (SCoBA), yields allocation poli-
cies that minimize the expected cumulative penalty for
unsuccessful tasks. Due to its computational efficiency and

tree structure in both layers, SCoBA can also seamlessly
interleave planning and execution online for new tasks.

The following are the contributions of our work:

1. We propose a general formulation for multi-robot allo-
cation under task uncertainty and temporal constraints.

2. We present a hierarchical algorithm, SCoBA, which uses
multi-agent conflict resolution with single-agent policy
tree search. We prove that SCoBA is both optimal in
expectation and complete under mild assumptions.

3. We demonstrate SCoBA’s strong competitive perfor-
mance against an oracle with complete lookahead, and
its advantage over four baseline methods for successfuly
executing tasks. Our results also show that SCoBA scales
well with increasing numbers of agents and tasks.We run
simulations on two distinct robotics domains (Fig. 1); a
team of robot arms picking and placing objects from a
conveyor belt and on-demand delivery of packages by a
team of drones in a city-scale area.

This paper builds upon an earlier version that appeared
in Robotics: Science and Systems 2020 (Choudhury et al.
2020a). It adds detailed proofs for both theoretical proper-
ties and elaborates on the other algorithmic features. It also
augments the experiments section with an expanded descrip-
tion of how we generate tasks in our first simulation domain,
an additional sets of results for each of the two domainswith a
different task execution probabilitymodel, andmore detailed
comparisons on computation time.

2 Background and related work

We briefly discuss three background areas: algorithms for
assignment and scheduling, multi-agent decision-making,
and relevant work in multi-robot task allocation.

2.1 Assignment and scheduling

Amajor topic in discrete optimization is assigning resources
to tasks (Burkard et al. 2009), for which the Hungarian algo-
rithm is a fundamental one (Munkres 1957). In temporal
tasks, we use the scheduling model, where the objective is a
function of completed jobs (Pinedo 2012). Scheduling prob-
lems with multiple resources and tasks are computationally
hard, even when deterministic (Lenstra et al. 1977). In online
scheduling, each task is only observed when made avail-
able (Albers 1999). Hard real-time tasks have a time window
constraint for completion (Dertouzos and Mok 1989).

Approaches for scheduling under uncertainty address
problems where task execution is not fully determinis-
tic (Chaari et al. 2014). These approaches are either proactive
in anticipating future disruptions (Lin et al. 2004), reactive

123



Autonomous Robots

to changes (Szelke and Kerr 1994; Raman et al. 2015), or
hybrid (Church and Uzsoy 1992). For scenarios with order-
ing constraints, such as assembly lines, additional models
like job shops (Al-Hinai and ElMekkawy 2011) and flow
shops (González-Neira et al. 2017) are useful, particularly
real-time flow shop scheduling (Rahmani and Heydari 2014;
Framinan et al. 2019). This extensive body of work provides
valuable insights but does not address task configurations
more complex than an ordered sequence on an assembly line
(such as delivery requests in a geographical area) and the
uncertainty of travel time to reach these tasks.

2.2 Multi-agent sequential decision-making

The Markov Decision Process (MDP) is a mathemati-
cal model for our setting of sequential decision making
under uncertainty (Kochenderfer 2015). Different solution
techniques exist for MDPs, depending on available infor-
mation; dynamic programming (Bertsekas 2005) when the
explicit transitionmodel is known, sample-based online plan-
ning (Péret and Garcia 2013) when only a generative model
exists, and reinforcement learning (Sutton and Barto 2018)
when no model is available. Our problem is a multi-agent
MDP (MMDP), where agents coordinate to achieve a single
shared objective; planning forMMDPs is generally computa-
tionally intractable in practice due to the exponentially large
decision space (Boutilier 1996).

Reinforcement learning techniques are often employed to
alleviate tractability issues (Littman 1994) by learning val-
ues of different states and actions, but model-free methods
like Q-Learning face exploration challenges (Lanctot et al.
2017). Recently, graph neural network representation tech-
niques have been used to learn good heuristics and reduce the
overall combinatorial complexity of such multi-robot alloca-
tion policies (Wang and Gombolay 2020; Zhang et al. 2020).
Online tree search methods can fare better than these offline
approaches by focusing on relevant states that are reachable
from the current one (Vodopivec et al. 2017), and a recent
multi-robot allocation algorithm is based on online Monte
Carlo Tree Search (Kartal et al. 2016). None of thesemethods
have any guarantee on solution quality or completeness, due
to the computational intractability of Multi-Agent MDPs.

2.3 Multi-robot task allocation

Weoutline a number of domain-agnostic anddomain-specific
works on multi-robot task allocation. MDP solvers have
been used to generate a sequential greedy strategy, but with-
out accounting for completion uncertainty (Campbell et al.
2013). The probability of task failure has been considered
by two-stage Stochastic Integer Programs and network flow
algorithms, which are exhaustive combinatorial approaches
unsuitable for tasks that are streaming in online (Ahmed and

Garcia 2003; Timotheou 2010, 2011). A sensitivity analysis
approach to optimal assignment under uncertainty provides
some insights on robustness but has no notion of temporal
constraints (Liu and Shell 2011).

Existing taxonomies for multi-robot task allocation help
us understand our problem difficulty (Gerkey and Mataric
2004; Nunes et al. 2017). Among the early works reviewed
in these taxonomies, two fundamental ones study the effects
of uncertain environments and dynamic tasks (Mataric et
al. 2003; Lerman et al. 2006). However, they both con-
sider distributed multi-robot systems, with simple alloca-
tion strategies based on local information that lack any
global guarantees. More recent work has developed an
auction-based method for distributed mobile robot teams
that plans time-constrained pickup and delivery schedules
online (Coltin and Veloso 2014). On the centralized side,
another recent paper presents a comprehensive approach for
task assignment and scheduling that handles tightly cou-
pled spatial and temporal constraints (Gombolay et al. 2018).
However, neither of them explicitly models or addresses task
execution uncertainty and how it interacts with time con-
straints to yield task failure probabilities.

Previous work on assembly lines includes hierarchical
planning frameworks, constraint programming, and robust
scheduling for robotic flowshop systems (Johannsmeier and
Haddadin 2016; Behrens et al. 2019; Che et al. 2017). How-
ever, they all simplify one or more of the key complexities
such as task completion uncertainty ormulti-agent configura-
tion models. Dynamic vehicle dispatch problems have been
explored in work on vehicle routing algorithms with time
windows and trip assignment algorithms for ridesharing (Lau
et al. 2003a; Alonso-Mora et al. 2017). However, they make
restrictive assumptions on the uncertainty and environment
dynamics. Driver-task assignment with uncertain durations
and task windows do solve for a similar setting as ours but
assume some knowledge of future requests (Cheung et al.
2005).

3 Problem formulation

We base our formulation on previous work for multi-robot
task allocation with temporal constraints (Gini 2017). There
is a set of N agents, denoted as [N ] and K tasks, denoted
as [K ]; the problem horizon is T time-steps. For each agent
n ∈ [N ] and task k ∈ [K ], the service time window is
Wnk = (

t lnk, t
u
nk

)
, where l and u are respectively the lower

and upper time limits within which n can attempt k. There
may also be an additional so-called downtime if the agent
executes the task successfully, e.g., the time for a robot arm
to transfer the object to the bin. We represent task duration

123



Autonomous Robots

uncertainty as

τnk(t) = Prob
[
n completes k within time t

]
. (1)

We assume knowledge of this cumulative distribution as
part of the problem specification, typical for task scheduling
under uncertainty (Chaari et al. 2014); the particular model is
domain-dependent. By definition, the conjunction of W and
τ imposes an upper bound on task completion probability,
i.e.,

Prob
[
n completes k

] ≤ τnk

(
tunk − t lnk

)
. (2)

For all unsuccessful tasks, the system incurs a penalty of∑
k J (k) units. An agent can attempt only one task at a time.
We seek an allocation policy that minimizes the expected

cumulative penalty due to unsuccessful tasks. An allocation
policy π is a mapping from the agents to the tasks and their
respective attempt times, i.e. π : [N ] → [K ] × [T ]. Since
there is uncertainty about task completion, a single-shot allo-
cation is insufficient. Of course, the attempt times for future
tasks depend on when the earlier tasks are actually executed
(successfully or unsuccessfully). Our optimization problem
is

argmin
π∈Π

E

⎡

⎣
∑

k∈[K ]
1[k] · J (k) | π

⎤

⎦

s.t. t ∈ Wnk ∀ (k, t) ∈ π(n),

(3)

where the indicator function 1[k] = 1 if the task k remains
incomplete at the end of the horizon, and Π is the set of
all possible allocation policies. The constraint enforces that
an agent attempts a task within the valid time window. The
expectation is over the task execution success distribution for
the allocation policy. For the rest of the discussion, we will
assume that J (k) = 1, i.e., all tasks are equally important;
this objective is the unweighted tardy jobs penalty (Pinedo
2012).

Multi-robot task allocation algorithms have been devel-
oped for various different objective functions (Gini 2017).
Our choice to minimize the number of missed tasks is a
standard one for allocation problems with time window
constraints (Lau et al. 2003b). This objective is entirely inde-
pendent of the the underlying task, which makes it more
domain-agnostic than some other ones. Its additive nature
is also useful for how we design and prove the algorithmic
properties of our proposed approach.

The discrete-time rolling horizon formulation described
above is fairly expressive and useful. We are concerned
with high-level allocation rather than the underlying task
execution, so we avoid the added complexity of continuous-
time representations. The underlying tasks typically involve

Fig. 2 The illustrated conveyor belt has N = 3 arms and K = 5
objects. The belt is of unit length, and each arm’s workspace spans 0.3
units (dashed lines are the limits). Given the belt speed, the agent-task
time window for any arm-object pair is at most 5 s

time-constrained trajectory planning, for which there are
well-established models and methods (Laumond 1998). Fur-
thermore, we can interleave planning and execution suitably
and recompute an allocation policy when new tasks appear
online (and we do so in practice).

3.1 Motivating examples

We describe two distinct robotics settings to instantiate our
formulation. First, consider the previously introduced exam-
ple of robot arms along a conveyor belt (see Fig. 2). Each arm
has an associated collection bin for objects picked up from
the belt. The objects appear on the belt through an external
process. The arms take varying amounts of time for pick-
ing, depending on the quality of the grasp strategy or gripper
attributes. Arms have finite reach, and an object may not be
picked up before it goes out of reach. Objects missed by
all arms must be sorted by hand afterwards. The goal is to
successfully pick-and-place asmany objects, or equivalently,
miss as few objects as possible.

Second, consider on-demand multi-drone dispatch for
package delivery in a city (note the underlying similarities
to the previous example). Delivery tasks arise through an
external process of customer requests. Drones take vary-
ing amounts of time to travel from the product depot to the
package delivery location, depending on flight conditions.
Requests arrive with time windows, such that drones must
wait until the window starts to deliver the product to the
customer, and late deliveries are penalized. Over a certain
time horizon, our objective is to minimize the number of late
deliveries.

3.2 Computational challenges

To motivate our approach, we briefly discuss the problem
complexity. By the multi-robot task allocation taxonomy
of Gerkey and Mataric (2004), the deterministic version of
our problem is ST-SR-TA, i.e. a single robot (SR) executes
a single task (ST) at a time, where tasks are time-extended
(TA) rather than instantaneous. The ST-SR-TA is an instance

123



Autonomous Robots

of an NP-Hard scheduling problem, specifically multi-agent
scheduling with resource constraints (Garey and Johnson
1975). The uncertainty of task execution success due to time
windows exacerbates this difficulty (Gini 2017). Finally, new
tasks streaming in require our approach to interleave plan-
ning and execution effectively, e.g., by replanning at task
arrivals (Cordeau and Laporte 2007).

4 Hierarchical multi-robot task allocation

Our key algorithmic challenges are sequential planning
under uncertainty of task completion andmulti-agent coordi-
nation of allocations. The jointmulti-agent planning problem
is computationally prohibitive for large settings (Boutilier
1996); most closely related previous works either use sim-
plifying approximations for planning and optimization (Tim-
otheou 2011; Hyland and Mahmassani 2018) or simple
coordination heuristics (Kartal et al. 2016; Mataric et al.
2003).

In contrast, we address the challenges hierarchically in a
two-layer approach called Stochastic Conflict-BasedAlloca-
tion (SCoBA). At the low level, we independently determine
the optimal task attempt sequence for each individual agent,
ignoring other agents. At the high level, we resolve potential
conflicts in assigned tasks across multiple agents to obtain a
valid multi-robot allocation. In this section, we will elabo-
rate on the two layers and how they come together in SCoBA.
We will then discuss briefly how we interleave planning and
execution online and how SCoBA can exploit sparse agent
interactions using coordination graphs.

4.1 Low-level: single agent policy

Wefirst consider the perspective of an individual agent, inde-
pendent of the other ones. From the definition in Sect. 3, we
are given the set of current tasks, corresponding time win-
dows, and task completion uncertainty distribution, and we
want a task attempt policy tree for the agent. Since task exe-
cution is stochastic, the first time an agent can attempt a task
depends on what the agent has attempted before it. We make
a simplifying approximation to compute the policy tree: the
agent attempts a task as soon as possible and observes the
outcome at the end of the window. This approximation col-
lapses the temporal dimension by treating tasks as discrete
events rather than extended ones.

We illustrate the policy tree search process for a single
robot n1 and three tasks (objects) k1, k2, k3 in Fig. 3. First,
we sort tasks in increasing order of the start of their time
window. Then, we sweep along the time axis and update the
tree at every event point, i.e., the start or finish of the window
(and the end of the downtime in case the task is successful).

The updates to the policy tree depends on the event point
(start/finish/downtime).

For the start of a time window, we introduce two new
decision nodes (ovals) to attempt (↔) or leave (�) the task
respectively. At the end of a time window and the down-
time, we introduce outcome nodes (rectangles) respectively
for failure or success, where the outcome probability p
depends on the minimum feasible start time for the attempt,
which in turn depends on the specific branch of the tree. For
instance, notice in Fig. 3 the three copies of the decision
node (n1 ↔ k2), with different probabilities, depending on
whether it was attempted after the failure, success, or non-
attempt of task k1. This difference is due to the time left to
complete the task, e.g., a non-attempt of k1 leaves the most
time and highest probability to complete k2.

The leaves of the binary policy tree are annotated with the
cumulative penalty along their branches, e.g., a penalty of 1
for each unsuccessful task. We then use dynamic program-
ming to propagate values upwards from the leaves to the root.
For a pair of outcome node siblings, we set the parent’s value
(denoted as V ) to the expected value of its children,

V (parent) := p · V (Fail) + (1 − p) · V (Succ). (4)

For a pair of decision node siblings, the parent’s value is
the minimum of the children’s, i.e.,

V (parent) := min{V (child1), V (child2)}. (5)

In the running example of Fig. 3, we have V (root) =
min{V (n1 ↔ k1), V (n1 � k1)}. The resulting tree encodes
the policy that minimizes the agent’s expected penalty for all
tasks up to the planning horizon, and V (root) is the value of
this expected penalty. We obtain the next task assigned to the
agent by following child nodes of minimum value until the
first attempt node (e.g., n1 ↔ k1).

4.2 High-level: multi-agent coordination

The policy tree determines the approximately optimal task
attempt sequence for an individual agent (approximate due
to the temporal simplification mentioned earlier). The tree
searches are independent of each other, so two agents may
have conflicting allocations. Since our objective function
depends on all agents, breaking ties naïvely could yield
arbitrarily poor global allocations. Multi-agent pathfind-
ing algorithms face a similar challenge and have to resolve
inter-agent conflicts between shortest paths (Felner et al.
2017). Conflict-Based Search is an effective strategy for this
problem (Sharon et al. 2012); by decoupling single-agent
path planning and inter-path conflict resolution, it is effi-
cient in practice without losing optimality. It has even been

123



Autonomous Robots

Fig. 3 The low-level routine of SCoBA generates the policy tree over
valid tasks for an individual agent, specifically, by sweeping along the
time axis and branching on the start or finish of a task’s time window. At
the start of a window, two new decision nodes (ovals) are introduced: to
attempt (↔) or to leave (�) the task respectively. At the end of a time
windowand the downtime, theoutcomenodes (rectangles) depict failure
or success. After the tree generation, dynamic programming propagates

the values from the leaves to the root. The probability values p = 0.03,
p′ = 0.1, p′′ = 0.9 are just hypothetical values that illustrate how the
same attempt node (n1 ↔ k2) has three different copies, with different
outcome probabilities (depending on the branch of the tree). Since we
interleave planning and execution, we can ignore task k3 as its time
window begins after the end of every task time window before it

used to solve a joint task assignment and path finding prob-
lem (Hönig et al. 2018).

We leverage the idea of inter-agent conflict resolution
from Conflict-Based Search. The high level of our algo-
rithm, SCoBA, searches a binary constraint tree (Fig. 4)
generated from conflicts between solutions for individual
agents obtained from the low level, i.e., the policy tree
search. Two agents n1 and n2 are in conflict if they are allo-
cated the same task k in overlapping time windows, i.e., if
(k, t1) ∈ π(n1), (k, t2) ∈ π(n2) and either t2 ∈ Wn1,k or
t1 ∈ Wn2,k . A constraint for an agent is a task excluded from
consideration by the tree search for that agent.

Each node in the constraint tree maintains (i) a set of con-
straints, i.e., tasks to ignore, for each agent, (ii) a multi-agent
allocation that respects all constraints, and (iii) the cost of
the allocation. For SCoBA, the cost of the allocation is the
sum of expected penalties for each agent, where the expected
penalty for each agent is the value of the root node of its pol-
icy tree. The allocation cost is used as the criteria for best-first
search on the constraint tree; this best first search continues
until it finds a conflict-free allocation.

4.3 Stochastic conflict-based allocation (SCoBA)

Algorithm1describesSCoBA,using the tree searchofSect. 4.1
as the PlanTree subroutine. Its structure is similar to an
earlier presentation of Conflict-Based Search by Felner et al.

Fig. 4 A constraint tree node with a conflict in the allocation generates
two children with corresponding constraints on the conflicting agents
(n1 and n3) and task (k1). Best-first search on the constraint tree returns
the first high-level node with a conflict-free allocation. The solution
node of the constraint tree is coloured green and the others are coloured
red

(2017). The constraint tree is initialized with the root node,
whichhas an empty constraint set and the allocation fromrun-
ningPlanTree for each individual agent (lines 2–6).When a
high-level node is expanded, the corresponding allocation is
checked for validity (line 9). If there is no conflict, we return
this allocation as the solution. Otherwise, for every conflict
between two or more agents, new child nodes are added,
where constraints are imposed on the agents involved (line
15). A child constraint tree node inherits its parent’s con-
straints and adds one more constraint for a particular agent.

123



Autonomous Robots

Consider the simple illustrative example in Fig. 4. The
root node has agents n1 and n3 both assigned to task k1.
This conflict yields two possible constraints, one inherited
by each of the two child nodes. The first constraint excludes
k1 from the recomputed policy tree search for n1. The second
constraint does the same for n3. For each new (non-root)
node, the low level tree search is only re-run on the agent for
which the constraint is added (line 19). Both of the resulting
child nodes are conflict-free, but the left one, with a lower
allocation cost of 2.6, is returned as the solution.
Our problem setting is both online and stochastic. However,
under some simplifying assumptions, we can establish opti-
mality and completeness properties for SCoBA. We derive
them from the corresponding optimality and completeness
proofs of the Conflict-Based Search algorithm for multi-
agent pathfinding (Sharon et al. 2012).

Algorithm 1 Stochastic Conflict-Based Allocation
1: procedure Main([N ], [K], T, Wn,k, τnk ∀ n, k)
2: Initialize A as the root
3: A.soln ← PlanTree(n, [K], T, W, τ) ∀ n
4: A.constr ← {} � Empty constraint set
5: A.cost ← SumOfIndividualCosts(A.solution)
6: Insert A into Open � Open list of Constraint Tree
7: while Open not empty
8: S ← PopBest(Open) � Min. Cost Allocation
9: if S.soln is valid � No conflicts
10: return S.soln
11: C ← find-conflicts(S) � Inter-agent conflicts
12: for all conflicts (n, k) ∈ C
13: A ← GenerateNewChildPlanTree(S, n, k)
14: A.cost ← SumOfIndividualCosts(A.soln)
15: Insert A into Open

16: procedure GenerateNewChildPlanTree(S, n, k)
17: A.constr ← S.constr ∪ k � Task to exclude
18: A.soln ← S.soln
19: A.soln ← PlanTree(n, [K] \ A.constr, T, W, τ)
20: return A

Proposition 1 If (i) no new tasks are addedonline, (ii) the tree
search is executed to the full horizon, and (iii) task completion
is determined at the end of the time window, then SCoBA is
optimal in expectation, i.e., SCoBA minimizes the expected
number of incomplete tasks at the end of the time horizon.

Proof Conflict-Based Search yields optimal multi-agent
solutions (paths) if two conditions hold: (a) the low-level
routine yields optimal solutions for individual agents and (b)
the overall multi-agent objective is the sum-of-costs of indi-
vidual agent solutions. SCoBA uses the same multi-agent
conflict resolution logic as Conflict-Based Search and will
inherit its optimality property if it satisfies the two sufficient
conditions.

We first show that (a) is true for SCoBA. Its low-level
single-agent routine uses dynamic programming with for-
ward tree search to obtain a policy tree. By construction,

this routine computes a policy that is optimal under expecta-
tion for any discrete, finite-horizonMarkovDecision Process
(MDP) if it conducts the tree search exhaustively, i.e., to the
full horizon. The expectation is over the uncertainty of the
action outcomes. Assumption (i) ensures we know all infor-
mation of future tasks at the initial state of the agent and
Assumption (ii) ensures the tree search is exhaustive.

Recall that in Sect. 4.1 we treated time-windows as dis-
crete events, a simplifying approximation. Under Assump-
tion (iii), this temporal approximation now becomes exact;
if we begin each task at the earliest possible time-step and
continue until the end of the window, each task attempt has
a single probability mass function over the two outcomes of
success and failure. Therefore, the single agent problem is
a discrete finite-horizon MDP and the low-level policy tree
search routine is optimal in expectation. That is, for each
agent n, the policy π∗(n) obtained from PlanTree satisfies

π∗(n) = argmin
π(n)∈Π(n)

E

⎡

⎣
∑

k∈π(n)

1[k] · J (k) | π(n)

⎤

⎦ , (6)

subject to the constraints in Eq. 3, where Π(n) is the set
of all possible policy trees for agent n. With some abuse of
notation, we use k ∈ π(n) to denote all the tasks allocated to
agent n. Thus, SCoBA satisfies condition (a) from above.

Now we examine condition (b). Our overall objective is
to minimize the expected total cost for tasks that the multi-
agent allocation policy π fails to complete. Denote this cost
as J (π). From Eq. 3, we have

J (π) = E

⎡

⎣
∑

k∈[K ]
1[k] · J (k) | π

⎤

⎦ . (7)

By linearity of expectation, Eq. 7 becomes

J (π) =
∑

k∈[K ]
E

[
1[k] · J (k) | π

]
. (8)

SCoBA resolves conflicts between single-agent allocation
policies to ensure that no two agents are allocated to the
same task. Therefore, we can split the summation over all
tasks based on their allocation to agents and rewrite Eq. 8 as

J (π) =
∑

n

∑

k∈π(n)

E
[
1[k] · J (k) | π(n)

]
. (9)

where, again, we use k ∈ π(n) to denote the tasks uniquely
allocated to agent n.

Consider the cost function for the single-agent policy
in Eq. 6. Recall from Sect. 4.1 that the minimizing value
of the single-agent cost is V (rootn) where rootn is the root

123



Autonomous Robots

of the single-agent optimal plan tree π∗(n), i.e.,

V (rootn) = min
π(n)∈Π(n)

E

⎡

⎣
∑

k∈π(n)

1[k] · J (k) | π(n)

⎤

⎦ . (10)

Using linearity of expectation, Eq. 10 becomes

V (rootn) = min
π(n)∈Π(n)

∑

k∈π(n)

E
[
1[k] · J (k) | π(n)

]
. (11)

Finally, using Eqs. 9–11 and that no two agents are allo-
cated to the same task, we have

min
π∈Π

J (π) = min
π∈Π

∑

n

∑

k∈π(n)

E [1[k] · J (k) | π(n)]

=
∑

n

min
π(n)∈Π(N )

∑

k∈π(n)

E [1[k] · J (k) | π(n)]

=
∑

n

V (rootn),

(12)

which is precisely the sum-of-costs of the individual agent
solutions. Thus, SCoBA satisfies condition (b) from above.

Therefore, SCoBA is optimal in expectation under the
given assumptions. 	

Proposition 2 Under the assumptions of Proposition 1,
SCoBA is complete. If a valid allocation exists, SCoBA
returns it.

Proof As with the proof for optimality, our proof for com-
pleteness follows that of the original Conflict-Based Search.
There, the authors showed completeness by establishing that
if a valid multi-agent path exists, the high-level constraint
tree has a finite number of nodes, i.e., an upper bound on the
number of generated nodes. The upper bound arises because
a multi-agent path problem has a finite number of constraints
and Conflict-Based Search generates at least one new con-
straint per new high-level node. Since it executes best-first
search with monotonically non-decreasing cost on the con-
straint tree, it is guaranteed to find a valid solution in finite
time if one exists.

We now apply the same reasoning to SCoBA. First, every
new high-level node A in SCoBA’s constraint tree must have
at least one more constraint than its predecessor A′, derived
from a conflict in the solution that A′ represents. Second, the
maximum possible number of constraints is the number of
ways K tasks can be distributed across N agents multiplied
by the time horizon, i.e., (K+N−1)!

K !(N−1)! · T .
The finite number of possible constraints and the addi-

tion of at least one new constraint per new node implies
a finite number of nodes in the constraint tree. SCoBA’s
high-level routine uses systematic best-first search over the
constraint tree, whose expanded nodes have monotonically

non-decreasing cost. Therefore, a conflict-free allocation, if
it exists, must be found after expanding a finite number of
SCoBA constraint tree nodes. Thus, SCoBA is a complete
algorithm. 	


We reiterate that SCoBA exhibits the above properties
only under simplifying assumptions about the multi-robot
task allocation problem. In practice, these assumptions do
not hold in our experimental domains, with the possible
exception of (ii), i.e., running the policy tree search to the
full horizon. As we describe in Sect. 3.2, our problem for-
mulation adds two distinct axes of difficulty (task execution
uncertainty and new tasks online) on top of an already NP-
Hard problem. These assumptions are thus necessary to curb
the intractability of the original formulation andmake claims
that are useful to know even in the restricted setting.

4.4 Interleaving planning and execution

Wedo not assume any particularmodel for new tasks arriving
online as it would depend on the nature of tasks in a specific
domain; contrast our task generation parameters in Sect. 5.2
with those in Sect. 5.3. A standard technique for dealing
with online updates in allocation or scheduling problems is
to interleave planning and execution, i.e., compute a solution
up to some horizon based on the current information, execute
the first part of that solution, and recompute a new solution in
either a periodic or event-driven fashion (Church and Uzsoy
1992).

SCoBA is concerned with high-level allocation, so execu-
tion in this context simply refers to simulating the attempt of
a task by the agent allocated to it (in practice this simulation
depends on the specific domain). For replanning, we use the
event-driven replanning strategy, where each event is the out-
come of the next task attempt by any agent. After each such
event, we have several updates to consider: the attempted
task is either removed or retained in the set of available tasks
depending on whether the attempt was a success or failure;
all new tasks that arrived between the previous and current
event are added; time windows of any existing but yet unat-
tempted tasks may have changed as well. After incorporating
all these updates, we re-run SCoBA from scratch on the cur-
rent problem.

SCoBA’s elegant representation makes interleaving plan-
ning and execution straightforward at both levels. For the
single agent policy tree search,we truncate the search horizon
based on domain knowledge or computation requirements.
In our implementation, we run the sweep until the first task
whose time window begins after the downtime of all tasks
before it (k3 in Fig. 3). For the multi-agent coordination, we
can set a threshold on the number of high-level conflicts,
once again based on domain or computation requirements.
If the threshold is exceeded, we return the current high-level

123



Autonomous Robots

solution. In this case, for robots allocated to the same task,
we break ties arbitrarily and keep the unassigned robots free
for the next event. In principle, we can thus plan for a vari-
able number of robots as well, because the effective number
of available robots at each event would change depending on
the current status.

4.5 Coordination graphs

SCoBA works with any arbitrary configuration of agents,
but we can use coordination graphs (CGs) from multi-agent
decision-making for more efficiency (Kok et al. 2003). In
CGs, each node represents an agent, and each edge encodes a
dependency between them, such that only connected agents
need to coordinate allocations. The choice of coordination
graph for a problem is domain-dependent. For instance,
the arms are ordered along the conveyor belt and their
workspaces are mutually exclusive, but we want to account
for objects near a boundary thatmay enter the nextworkspace
soon (if unattempted). Thus, the coordination graph is a
directed chain from the first arm to the last.

The CG structure impacts the high-level multi-agent coor-
dination stage of SCoBA. The absence of an edge between
two agents implies that their sets of possible tasks are dis-
joint, i.e., they cannot have conflicting allocations. Therefore,
in practice, SCoBA need not consider dependencies between
all the agents. If the CG is directed, as in the conveyor belt,
we run the tree search for agents along a topological order-
ing of the CG. For any agent, we exclude the tasks already
assigned to its predecessors. By construction, we will obtain
a conflict-free allocation at the end, without any child nodes
being generated in the high-level constraint tree). If the CG
is undirected, as in multi-drone delivery, such a topological
ordering is not feasible, and conflicts may be unavoidable.
However, if the CGhasmultiple connected components, then
nodes (agents) in different components cannot conflict with
each other, so we can run SCoBA on each component in
parallel.

5 Experiments and results

The primarymetric for evaluating SCoBA is the accumulated
penalty for unsuccessful tasks. We will also evaluate its scal-
ability to problem size. We first outline the range of methods
we use to baseline SCoBA. We then present and discuss the
results for multiple performance metrics on simulations for
each of our two distinct robotics-inspired domains: conveyor
belt pick-and-place and on-demandmulti-drone delivery dis-
patch. We use the Julia programming language (Bezanson et

al. 2017) on a 16 GiB RAM machine and a 6-core 3.7 GHz
CPU for all simulations.1

5.1 Baselines and evaluation

We use multiple complementary algorithms as baselines:

1. EDD: The Earliest Due Date heuristic assigns each agent
to the taskwith the nearest timewindowdeadline (Pinedo
2012).

2. Hungarian: An unbalancedHungarian algorithm, where
the edge weight for an agent-task pair is the probabil-
ity of successful task completion (Munkres 1957). This
method is a special case of a general purpose network-
flow approach that assigns one agent to multiple tasks at
a time (Timotheou 2011).

3. MCTS: A recent Monte-Carlo Tree Search approach
specifically for multi-robot task allocation (Kartal et al.
2016). The tree search is conceptually similar to ours
(albeit with Monte Carlo sampling of outcomes) but it
uses arbitrary priority orderings among agents to coordi-
nate decisions and control the tree branching factor. For
all scenarios, we used 100 Monte Carlo trials to compute
each action, an exploration constant of 0.1, and a tree
depth of 20.

The baselines cover a range of approaches for multi-robot
allocation from scheduling to sequential decision-making
under uncertainty. Both EDD and Hungarian are reactive,
i.e., do not plan sequentially. The latter optimizes for multi-
ple agents, unlike the former. MCTS is a model-based online
method that plans sequentially by framing the allocation
problem as a Markov Decision Process. As with SCoBA,
we implemented all baselines in Julia. For MCTS, we used
the POMDPs.jl framework formodeling and solvingMarkov
Decision Processes (Egorov et al. 2017). The rollout policy
of MCTS used the Earliest Due Date heuristic.

We compare SCoBA to the baselines on both the met-
rics of total unsuccessful tasks and computation time. The
latter comparison is not apples-to-apples, because the base-
lines have different input interfaces that impose different
restrictions on problem size, depending on the domain. Fur-
thermore, computation time is not an optimizing metric but
rather a satisficing one; our objective for SCoBA’s compu-
tation time is to be reasonable for the requirements of the
respective domains.

5.2 Conveyor belt domain

In this domain, three identical robot arms are arranged along a
moving conveyor belt, picking objects from the belt and plac-

1 The code is available at https://github.com/sisl/SCoBA.jl.

123

https://github.com/sisl/SCoBA.jl


Autonomous Robots

Fig. 5 We generate tasks for the conveyor belt domain by reflecting the setup in space and time. When the objects placed on the virtual belt (shaded
with a gradient fill) by the reflected arms cross the Y-axis, they appear as new tasks on the real belt (with solid grey fill)

ing them in collection bins (Fig. 1a).We design an abstracted
simulation of the scenario (Fig. 2), scaled along an X-axis
of unit length. The arms have mutually exclusive adjacent
workspaces of 0.3 units each, from x = 0.05 to x = 0.95.
New tasks arrive as new objects appearing at the head of the
belt.

5.2.1 Task generation and scenario parameters

To generate new tasks, we reflect the conveyor belt setup in
space and time and create a virtual assembly line (on the left
side of Fig. 5) where arms pick objects from bins and place
them on a virtual belt. When the virtual belt crosses x = 0
(the Y-axis), the virtual objects appear as new real objects.
As we explain shortly, this process allows us to generate task
sequences that are solvable under the assumption of no grasp
uncertainty.

Three scenario parameters instantiate a conveyor belt
problem and affect its difficulty:

(i) Belt speed: The speed of the belt determines the effective
time window for each arm-object pair, e.g., 5 s in Fig. 2.
If task execution is successful, each arm has a downtime
of Δt = 2s to deposit the object in the bin. We expect
performance to degrade as belt speed increases.

(ii) New object probability: At each timestep, a virtual arm
drops its object onto the virtual belt with some Bernoulli
probability (all virtual arms have the same such proba-
bility). The drop location is uniformly sampled within
the virtual arm’s workspace. After a virtual arm drops
an object, it moves to the virtual bin to collect the next
one. We expect performance to degrade as new object
probability increases.

(iii) Grasp success probability: We use two different mod-
els of uncertainty over task completion due to imperfect
grasping. The first is a geometric distribution where p

is the Bernoulli probability of a successful pick by each
arm (since arms are identical, they all have the same grasp
success probability); the corresponding cumulative prob-
ability function from Eq. 1 is

τnk(t) = 1 − (1 − p)t , where t ∈ N. (13)

The second is a uniform distribution over the maximum
number of time-steps Tmax that an object can spend in an
arm’s workspace, where the total probability of success
by each arm is p. The corresponding cumulative function
from Eq. 1 is

τnk(t) = t

Tmax
· p, where t, Tmax ∈ N. (14)

We expect performance to improve as p increases, but
the secondmodel yieldsmuchmore adversarial scenarios
than the first one.

5.2.2 Competitive performance against oracle

For online algorithms like SCoBA, a standard metric is the
competitive performance against an oracle with complete
information, i.e., full lookahead. Our task generation pro-
cess allows an ablation study for the effect of lookahead alone
(deconfounded from uncertainty). The process ensures that
when there is no grasp uncertainty, there exists at least one
allocation policy that successfully completes all tasks. One
such policy is that which reflects the virtual setup itself. For
instance, it allocates the first arm, i.e., the arm closest to the
Y-axis, to pick up the real objects whose corresponding vir-
tual forms were placed by the first arm’s reflection (similarly
for other arms). The attempt location for any arm-object pair
is the reflection, on the real belt, of the drop point of the
corresponding virtual object from the corresponding virtual
arm.

123



Autonomous Robots

Table 1 The mean proportions of objects lost per trial by SCoBAwhen
grasping is perfect

Belt speed New object probability
(units/s) 0.5 0.75 1.0

0.04 0.0 0.0 0.0

0.07 2.7 × 10−5 7.9 × 10−5 1.3 × 10−4

0.1 1.7 × 10−4 3.7 × 10−4 5.2 × 10−4

We vary the other two parameters, that affect the rate of appearance of
new tasks. The negligible values demonstrate SCoBA’s strong compet-
itive performance relative to the oracle

To obtain the perfect allocation policy in practice (assum-
ing no uncertainty), we would need complete access to the
virtual generator for a problem instance. However, we do not
need to know the oracle itself, only its performance, which is
an upper bound on the performance of any other method. If a
perfect allocation policy exists, an oracle with full lookahead
would have full success rate for any task sequence generated
by our process. We can thus evaluate the competitive per-
formance of SCoBA simply by evaluating the proportion of
tasks that it fails to complete. The smaller this number, the
better is SCoBA’s competitive performance.

We set p = 1with the geometric distribution of grasp suc-
cess probability for all arms and jointly varied the other two
parameters, belt speed and new object probability. For each
trial in a setting, we simulated T = 500 time-steps (seconds)
and evaluated the proportion of objectsmissed bySCoBArel-
ative to the total number of objects. We compute the average
of this proportion-per-trial over 100 trials (standard error neg-
ligible) inTable 1.The lowmagnitudes demonstrateSCoBA’s
robustness to insufficient lookahead. With increasing value
of either parameter, performance degrades.

5.2.3 Unsuccessful task penalty

We varied all three scenario parameters independently and
compared the fraction of missed objects for SCoBA versus
the other baselines. Figure 6 demonstrates the results, with
the upper panel for the geometric distribution of grasp prob-
ability and the lower panel for the uniform distribution.

We average all numbers over 100 trials with standard error
bars. For each subplot, only one parameter varies (the x-
label), while the other two stay at their default values: grasp
probability p = 0.75 for the geometric and p = 0.8 for
the uniform distributions, 0.07 units/s for belt speed, and
0.75 for new object probability. We use a different range
of values for grasp probability in the lower panel (the left-
most subplot) because the uniform distribution case is much
more adversarial than the geometric one. This increase in
difficulty reflects in the much higher absolute values over all
settings in the lower panel. Note that p = 1.0 in the lower
left-most subplot does not mean that grasping is perfect in

those scenarios, just that themaximumprobability of success
from Eq. 14 is 1 (if the arm can attempt the object at its first
point of entry into the workspace).

SCoBA considerably outperforms the other baselines
across all settings. Furthermore, its performance degrades
or improves as expected relative to the change in each prob-
lem parameter (e.g., more objects missed with increasing
new object probability). Among the baselines, the reactive
Hungarian method has the best performance, likely because
sequential deliberation is not as crucial with non-overlapping
workspaces and small downtime (unlike in the next domain).

The MCTS baseline (Kartal et al. 2016) assumed a task
environment similar to our drone delivery domain. Thus, for
the conveyor belt domain, we had to make our own design
choices for the state and action space; we chose to discretize
the belt into uniform width slots, each with some number of
objects at every time-step, for the system state. The action
space for each arm is the set of slots in its corresponding
workspace. We used 0.02 units per slot for MCTS, which is
a resolution fine enough to ensure that MCTS does not lose
any information compared to SCoBA. Too much finer would
have led to a prohibitively large state space.

5.2.4 Scalability

In this domain, the Coordination Graph is a directed chain
(see Sect. 4), so the computational bottleneck for SCoBA
is the policy tree search (multi-agent coordination is triv-
ial). In Table 2 we report average tree search computation
times for a single arm with an increasing number of objects
(scattered throughout the arm workspace). Empirically, we
observe that the computation time is roughly cubic in the
number of objects, and the wall clock times are quite reason-
able.

The table also reports the computation times for the Hun-
garian algorithm. It is much faster than SCoBA, but unlike
SCoBA, it does not plan sequentially and only matches each
arm to one object at a time. EDD is a simple heuristic that
does not plan jointly for all agents, so its computation time is
not useful. For MCTS, the action computation time is inde-
pendent of the number of the objects because for the action
space, we discretize the conveyor belt into 15 slots per agent.
With 100 iterations and a search depth of 20, the average
MCTS action takes 0.1 s to compute. Increasing the MCTS
computation time with more iterations or samples would not
have yielded different decisions and hence would not have
changed its performance on the task penalty.

5.3 Drone delivery domain

In the second domain, we dispatch drones from depots to
deliver packages around a city-scale area, subject to deliv-
ery time window constraints. Each drone is associated with

123



Autonomous Robots

Fig. 6 Legend: EDD Hungarian MCTS SCoBA. All results
are averaged over 100 trials, with T = 500 time-steps per trial (standard
error bars are negligible). Top row: geometric distribution of grasp suc-
cess probability (Eq. 13). Bottom row: uniform distribution (Eq. 14).

The latter yieldsmuchmore adversarial scenarios than the former,which
is why the bars in the lower panel are much higher across the board.
On the metric of the fraction of unsuccessful tasks, i.e., objects missed,
SCoBA consistently outperforms all other baselines

Fig. 7 Legend: EDD Hungarian MCTS SCoBA. Results are
averaged over 100 trials, each of T = 100 time-steps. The upper and
lower panels are respectively for the Epanechnikov (Eq. 15) andNormal

(Eq. 16) distributions over travel time. For the drone delivery domain,
on the primary metric of the fraction of late package deliveries, SCoBA
outperforms the baselines on all but one setting

123



Autonomous Robots

Table 2 The low computation times demonstrate that SCoBA’s tree
search for an individual arm scales with the number of objects in the
arm’s workspace

Objects SCoBA Hungarian

40 9 × 10−4 s 1.7 × 105 s

80 0.004 s 3.1 × 10−5 s

120 0.013 s 4.3 × 10−5 s

160 0.029 s 5.7 × 10−5 s

200 0.052 s 8.3 × 10−5 s

The Hungarian algorithm is faster as it solves a one-shot deterministic
problem rather than a sequential stochastic one

a specific depot and can carry only one package at a time;
therefore, each drone makes trips from its depot to a desti-
nation and back to the same depot. Every package request
arrives with a specific time window within which a drone
from the team must deliver it.

Our setup is based on our recent work for multi-drone
delivery over ground transit (Choudhury et al. 2020b). To
estimate drone travel time, we use the location-to-location
estimates from its North San Francisco scenario, which sim-
ulates deliveries over an area of 150 km2 (see Fig. 1b). We
pre-select geographic locations for up to 5 depots scattered
around the city to ensure good coverage. Drones have amaxi-
mum flight range of 10 km, which restricts the set of possible
package deliveries for each drone. Two scenario parameters
affect the performance here:

(i) Drones and depots: The number of depots and the ratio
of drones to depots both impact the ability of the system
to dispatch agents to a given delivery location in time.
We distribute drones equally across depots. With better
coverage, we expect performance to improve.

(ii) New request probability: A new delivery request arrives
per minute with some probability. Each delivery location
is sampled uniformly within a bounding box. We start
with a number of packages roughly 1.5 times the num-
ber of drones in the scenario. With higher probability,
we expect performance to degrade. Each request has a
window duration sampled uniformly between 15 and 30
minutes.

Our reference framework gives us deterministic drone
travel-time estimates between a depot d and package loca-
tion p, say T T (d, p). Similar to the previous domain, we
use two differentmodels for task completion uncertainty, i.e.,
travel time uncertainty based on T T (d, p): a finite-support
Epanechnikov distribution,

τn,k(t) ∼ Epan(μ = T T (d, p), r = T T (d, p)/3.0), (15)

and an infinite-support Normal distribution,

τn,k(t) ∼ N (μ = T T (d, p), σ = T T (d, p)/3.0). (16)

Unlike the previous domain, the uncertainty models here do
not have parameters that we vary to change the problem dif-
ficulty, and we do not expect either model to be much more
adversarial than the other. In each experiment for both mod-
els, the true travel times between two locations are drawn
from Eqs. 15 and 16 respectively. Our synthetic distribution
choices are arbitrary but reasonable because a high mean
travel time is likely to have higher variance, due to more
opportunities for delays or speedups.

5.3.1 Unsuccessful task penalty

We vary the scenario parameters and compare the fraction of
late package deliveries for SCoBA versus the other baselines
in Fig. 7. The upper panel is for the Epanechnikov travel time
distribution and the lower one is for the Normal travel time
distribution. We choose three sets of depot-and-drone num-
bers with complementary coverage properties, e.g., (3, 18)
has fewer depots and a higher drone-depot ratio while (5, 15)
has more depots but a smaller ratio. We vary the new request
probability, simulate T = 100 time-steps (minutes) per trial,
and average results over 100 trials. SCoBA is generally the
best across all settings except in one (5 depots, 15 drones,
probability 1.0) where MCTS is slightly better. Having more
drones per depot appears to be more influential than having
more depots, e.g., the errors for (5, 15) are higher than the
corresponding ones for (3, 18).

The improvement in relative performance of the MCTS
baseline (Kartal et al. 2016) is not surprising. It is tailored for
vehicle dispatch problems, with search heuristics that exploit
the domain structure, e.g., agents have longer downtime to
return to their depots, and the per-agent action space is a sub-
set of valid tasks rather than a discretization of a conveyor belt
into slots. The drone delivery domain also penalizes MCTS
less for its inability to coordinate between agents, compared
to the conveyor belt. In drone delivery, each task has a single
timewindow for any agent to complete it in. In conveyor belt,
each object has effectively three time windows, one for each
arm; unlike MCTS, SCoBA can coordinate between arms
such that an earlier one delegates an object to a later arm to
improve overall system performance.

5.3.2 Scalability

High-level conflicts may occur in this domain, and SCoBA
will invoke its multi-agent coordination layer (on top of pol-
icy tree search) to compute a valid multi-agent allocation.
Therefore, in Table 3 we report the mean and standard error
for the computation times of the full SCoBA algorithm (over

123



Autonomous Robots

Table 3 The mean and standard error (over 50 trials in each setting) for SCoBA’s computation time on the multi-drone delivery domain, as well as
the mean times for Hungarian and MCTS

(Dep., Dr.,) 20 Requests 50 Requests 100 Requests
SCoBA Hung MCTS SCoBA Hung MCTS SCoBA Hung MCTS

(3, 18) (0.02, 0.003) 0.00008 0.007 (1.48, 0.16) 0.0001 0.008 (2.55, 0.23) 0.0002 0.009

(5, 15) (0.06, 0.008) 0.00008 0.006 (2.13, 0.2) 0.0001 0.007 (5.42, 0.5) 0.0002 0.009

(5, 30) (0.17, 0.003) 0.0002 0.01 (1.76, 0.12) 0.0002 0.013 (7.08, 0.47) 0.0003 0.016

All times are in seconds

50 different trials for each setting). We vary the number of
drones and depots and the number of tasks, i.e., the current
package delivery requests. The absolute wall clock values
are reasonable considering the time-scale of operation of the
system in the real world is minutes and hours. Some sce-
narios have disproportionately high mean and variance due
to more high-level conflicts, a known behavioral property of
Conflict-Based Search algorithms (Sharon et al. 2012).

Table 3 also shows average times for the Hungarian and
MCTS baselines on the same settings; their standard errors
are negligible in comparison. As expected, Hungarian is
orders ofmagnitude faster thanSCoBA.ForMCTS the action
space is directly proportional to the number of tasks (unlike in
the previous domain) and the computation times vary slightly
across settings. The absolute values of MCTS are lower than
that of SCoBA; the former imposes an arbitrary ordering
on agents and computes allocations for agents one-by-one
based on that order, thus circumventing all the complexity
of multi-agent coordination. As in the conveyor belt domain,
increasing the MCTS computation time with more iterations
or samples would not have changed its performance on the
task penalty.

6 Conclusion

We presented SCoBA, a hierarchical approach for multi-
robot task allocation under uncertainty and time constraints.
In theory, SCoBA is optimal in expectation and complete
under mild technical assumptions. In practice, over two dis-
tinct domains, it has strong competitive performance against
an oracle, consistently outperforms a number of baselines,
and is scalable in terms of computation time to both number
of agents and tasks.

6.1 Limitations and future work

We assume a known uncertainty model, which is typical
for multi-robot task allocation algorithms. However, since
SCoBA is based on policy tree search, we could use it in-the-
loop with model-based reinforcement learning in case the
uncertainty model needs to be estimated online. We focus on

high-level allocation here, but we could integrate SCoBA in
a full pipeline for robotics applications.

SCoBA’s computation time is sensitive to the number of
high-level conflicts; future work could run ablation stud-
ies to investigate how many conflicts arise in practice, how
many it resolves, and what the correlation is with compu-
tation time. This analysis could motivate improvements to
the multi-agent conflict resolution level such as bounded
sub-optimal variants (Barer et al. 2014), better resolution
heuristics (Boyarski et al. 2015) and reasoning about the
stochasticity of conflicts.

Acknowledgements This work was supported by the Ford Motor
Company, National Science Foundation Grant Number 1941722 and
National Science Foundation Grant Number 1849952.

References

Ahmed, S., & Garcia, R. (2003). Dynamic capacity acquisition and
assignment under uncertainty. Annals of Operations Research,
124(1–4), 267–283.

Al-Hinai, N., &ElMekkawy, T. Y. (2011). Robust and stable flexible job
shop scheduling with randommachine breakdowns using a hybrid
genetic algorithm. International Journal ofProductionEconomics,
132(2), 279–291.

Albers, S. (1999). Better bounds for online scheduling. SIAM Journal
on Computing, 29(2), 459–473.

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus,
D. (2017). On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proceedings of the National Academy of
Sciences, 114(3), 462–467.

Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal vari-
ants of the conflict-based search algorithm for the multi-agent
pathfinding problem. In European conference on artificial intel-
ligence (ECAI), pp. 961–962.

Behrens, J. K., Lange, R., & Mansouri, M. (2019). A constraint pro-
gramming approach to simultaneous task allocation and motion
scheduling for industrial dual-arm manipulation tasks. In IEEE
international conference on robotics and automation (ICRA),
IEEE, pp. 8705–8711.

Bertsekas, D. P. (2005). Dynamic programming and optimal control.
Athena Scientific.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia:
A fresh approach to numerical computing. SIAM Review, 59(1),
65–98.

Boutilier, C. (1996). Planning, learning and coordination in multia-
gent decision processes. In Conference on theoretical aspects of

123



Autonomous Robots

rationality and knowledge, Morgan Kaufmann Publishers Inc., pp.
195–210.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O.,
& Shimony, S. E. (2015). ICBS: Improved conflict-based search
algorithm for multi-agent pathfinding. In International joint con-
ference on artificial intelligence (IJCAI), pp. 740–746.

Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment
problems, SIAM.

Campbell, T., Johnson, L., & How, J. P. (2013). Multiagent allocation
of Markov decision process tasks. In American control conference
(ACC), IEEE, pp. 2356–2361.

Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014).
Scheduling under uncertainty: Survey and research directions.
In International conference on advanced logistics and transport,
ICALT, pp. 229–234.

Che, A., Kats, V., & Levner, E. (2017). An efficient bicriteria algo-
rithm for stable robotic flow shop scheduling. European Journal
of Operational Research, 260(3), 964–971.

Cheung, R. K., Hang, D. D., & Shi, N. (2005). A labeling method
for dynamic driver-task assignment with uncertain task durations.
Operations Research Letters, 33(4), 411–420.

Choudhury, S., Gupta, J. K., Kochenderfer, M. J., Sadigh, D., & Bohg,
J. (2020a). Dynamic multi-robot task allocation under uncertainty
and temporal constraints. Robotics: Science and Systems Founda-
tion.

Choudhury, S., Solovey,K.,Kochenderfer,M. J.,&Pavone,M. (2020b).
Efficient large-scale multi-drone delivery using transit networks.
In IEEE international conference on robotics and automation
(ICRA).

Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-
driven rescheduling policies in dynamic shops. International
Journal of Computer Integrated Manufacturing, 5(3), 153–163.

Coltin,B.,&Veloso,M.M. (2014).Online pickup anddelivery planning
with transfers for mobile robots. In IEEE international conference
on robotics and automation (ICRA), IEEE, pp. 5786–5791.

Cordeau, J., & Laporte, G. (2007). The dial-a-ride problem:Models and
algorithms. Annals of Operations Research, 153(1), 29–46.

Dertouzos, M. L., & Mok, A. K. (1989). Multiprocessor online
scheduling of hard-real-time tasks. IEEETransactions on Software
Engineering, 15(12), 1497–1506.

Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J.
K., & Kochenderfer, M. J. (2017). POMDPs.jl: A framework for
sequential decision making under uncertainty. Journal of Machine
Learning Research (JMLR), 18(26), 1–5.

Felner, A., Stern, R., Shimony, S. E., Boyarski, E., Goldenberg, M.,
Sharon, G., Sturtevant, N., Wagner, G., & Surynek, P. (2017).
Search-based optimal solvers for themulti-agent pathfinding prob-
lem: Summary and challenges. In Symposium on combinatorial
search.

Framinan, J. M., Fernandez-Viagas, V., & Perez-Gonzalez, P. (2019).
Using real-time information to reschedule jobs in a flowshop with
variable processing times. Computers & Industrial Engineering,
129, 113–125.

Garey, M. R., & Johnson, D. S. (1975). Complexity results for multi-
processor scheduling under resource constraints. SIAM Journal on
Computing, 4(4), 397–411.

Gerkey, B. P., &Mataric, M. J. (2004). A formal analysis and taxonomy
of task allocation in multi-robot systems. International Journal of
Robotics Research, 23(9), 939–954.

Gini, M. L. (2017). Multi-robot allocation of tasks with temporal and
ordering constraints. In AAAI conference on artificial intelligence
(AAAI), pp. 4863–4869.

Gombolay, M. C., Wilcox, R., & Shah, J. A. (2018). Fast scheduling
of robot teams performing tasks with temporospatial constraints.
IEEE Transactions on Robotics (TRO), 34(1), 220–239.

González-Neira, E., Montoya-Torres, J., & Barrera, D. (2017). Flow-
shop scheduling problem under uncertainties: Review and trends.
International Journal of Industrial Engineering Computations,
8(4), 399–426.

Hönig, W., Kiesel, S., Tinka, A., Durham, J., & Ayanian, N. (2018).
Conflict-based search with optimal task assignment. In Interna-
tional conference on autonomous agents and multiagent systems
(AAMAS).

Hyland, M., & Mahmassani, H. S. (2018). Dynamic autonomous vehi-
cle fleet operations: Optimization-based strategies to assign AVs
to immediate traveler demand requests. Transportation Research
Part C: Emerging Technologies, 92, 278–297.

Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human–robot
interaction-planning framework for task allocation in collabora-
tive industrial assembly processes. IEEE Robotics and Automation
Letters, 2(1), 41–48.

Kartal, B., Nunes, E., Godoy, J., & Gini, M. L. (2016). Monte Carlo
tree search for multi-robot task allocation. In AAAI conference on
artificial intelligence (AAAI), pp. 4222–4223.

Kochenderfer,M. J. (2015).Decisionmaking under uncertainty: Theory
and application. MIT Press.

Kok, J. R., Spaan, M. T., & Vlassis, N. (2003). Multi-robot decision
making using coordination graphs. International Conference on
Advanced Robotics (ICAR), 3, 1124–1129.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Péro-
lat, J., Silver, D., & Graepel, T. (2017). A unified game-theoretic
approach to multiagent reinforcement learning. In Advances in
neural information processing systems, pp. 4190–4203.

Lau, H. C., Sim, M., & Teo, K. M. (2003a). Vehicle routing problem
with time windows and a limited number of vehicles. European
Journal of Operational Research, 148(3), 559–569.

Lau, H. C., Sim, M., & Teo, K. M. (2003b). Vehicle routing problem
with time windows and a limited number of vehicles. European
Journal of Operational Research, 148(3), 559–569.

Laumond, J. P., et al. (1998). Robot motion planning and control (Vol.
229). Springer.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine
scheduling problems. In Annals of discrete mathematics, Vol. 1,
Elsevier, pp. 343–362.

Lerman,K., Jones,C.V.,Galstyan,A.,&Mataric,M. J. (2006).Analysis
of dynamic task allocation in multi-robot systems. International
Journal of Robotics Researh (IJRR), 25(3), 225–241.

Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust opti-
mization approach for scheduling under uncertainty: I—Bounded
uncertainty. Computers & Chemical Engineering, 28(6–7), 1069–
1085.

Littman, M. L. (1994). Markov games as a framework for multi-agent
reinforcement learning. In Machine learning, Elsevier, pp. 157–
163.

Liu, L., & Shell, D. A. (2011). Assessing optimal assignment under
uncertainty: An interval-based algorithm. The International Jour-
nal of Robotics Research, 30(7), 936–953.

Mataric,M. J., Sukhatme,G. S.,&Østergaard, E.H. (2003).Multi-robot
task allocation in uncertain environments. Autonomous Robots,
14(2–3), 255–263.

Munkres, J. (1957). Algorithms for the assignment and transportation
problems. Journal of the Society for Industrial and Applied Math-
ematics, 5(1), 32–38.

Nunes, E., Manner, M. D., Mitiche, H., & Gini, M. L. (2017). A tax-
onomy for task allocation problems with temporal and ordering
constraints. Robotics and Autonomous Systems, 90, 55–70.

Ooonovan, R., Uzsoy, R., &McKay, K. N. (1999). Predictable schedul-
ing of a single machine with breakdowns and sensitive jobs.
International Journal ofProductionResearch, 37(18), 4217–4233.

Péret, L., & Garcia, F. (2013). Online resolution techniques. InMarkov
decision processes in artificial intelligence, pp. 153–184.

123



Autonomous Robots

Pinedo, M. (2012). Scheduling (Vol. 29). Springer.
Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop

scheduling with unexpected arrivals of new jobs and uncertain
processing times. Journal of Manufacturing Systems, 33(1), 84–
92.

Raman, V., Donzé, A., Sadigh, D., Murray, R. M., & Seshia, S. A.
(2015). Reactive synthesis from signal temporal logic specifica-
tions. In International conference on hybrid systems: Computation
and control, pp. 239–248.

Sharon,G., Stern,R., Felner,A.,&Sturtevant,N. (2012).Conflict-based
search for optimal multi-agent path finding. In AAAI conference
on artificial intelligence (AAAI).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT press.

Szelke, E.,&Kerr, R.M. (1994). Knowledge-based reactive scheduling.
Production Planning & Control, 5(2), 124–145.

Timotheou, S. (2010). Asset-task assignment algorithms in the presence
of execution uncertainty. The Computer Journal, 54(9), 1514–
1525.

Timotheou, S. (2011). Network flow approaches for an asset-task
assignment problem with execution uncertainty. In Computer and
information sciences, Springer, pp. 33–38.

Vodopivec, T., Samothrakis, S., & Ster, B. (2017). On Monte Carlo
tree search and reinforcement learning. Journal of Artificial Intel-
ligence Research, 60, 881–936.

Wang, Z., & Gombolay, M. (2020). Learning scheduling policies for
multi-robot coordination with graph attention networks. IEEE
Robotics and Automation Letters, 5(3), 4509–4516.

Yan, Z., Jouandeau, N., & Chérif, A. A. (2012). Multi-robot heuristic
goods transportation. In IEEE international conference on intelli-
gent systems, pp. 409–414.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Chi, X. (2020).
Learning to dispatch for job shop scheduling via deep reinforce-
ment learning. In Advances in neural information processing
systems (NIPS), Vol. 33.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Shushman Choudhury is a Ph.D.
student in Computer Science at
Stanford University. He is gen-
erally interested in computational
decision-making for intelligent
systems and spaces. In his Ph.D.,
he has developed hierarchical
algorithms for coordinated multi-
robot networks. His work has been
nominated for Best Multi-Robot
Paper at ICRA 2020 and featured
in BBC Digital Planet. He has
also contributed to many open-
sourced repositories for planning
and decision-making methods.

Prior to joining Stanford, Shushman obtained an MS in Robotics from
Carnegie Mellon University in 2017 and a B.Tech in Computer Sci-
ence and Engineering from IIT Kharagpur in 2015.

Jayesh K. Gupta is Senior
Researcher at Microsoft. Prior to
joining Microsoft and during the
work in this paper, he was a Com-
puter Science Ph.D. student at
Stanford University. He was advi-
sed by Mykel Kochenderfer. He is
interested in enabling autonomous
agency for the real world. To this
end, he studies how agents can
learn better models of the world
for effective control, learn from
each other, and work well together
in a team. Jayesh is an avid con-
tributor/maintainer of a variety of

open-source software in the JuliaPOMDP ecosystem. Previously,
Jayesh obtained his Bachelors in Electrical Engineering from IIT Kan-
pur in 2015.

Mykel J. Kochenderfer received
the B.S. and M.S. degrees in com-
puter science from Stanford Uni-
versity, Stanford, CA, USA, and
the Ph.D. degree from The Uni-
versity of Edinburgh, Edinburgh,
U.K. He is currently an Asso-
ciate Professor of Aeronautics and
Astronautics with Stanford Uni-
versity. He is also the Director of
the Stanford Intelligent Systems
Laboratory, conducting research
on advanced algorithms and ana-
lytical methods for the design of
robust decision-making systems.

Dorsa Sadigh is an assistant pro-
fessor in Computer Science and
Electrical Engineering at Stanford
University. Her research interests
lie in the intersection of robotics,
learning, and control theory.
Specifically, she is interested in
developing algorithms for safe and
adaptive human-robot interaction.
Dorsa has received her doctoral
degree in Electrical Engineering
and Computer Sciences (EECS)
from UC Berkeley in 2017, and
has received her bachelor’s degree
in EECS from UC Berkeley in

2012. She is awarded the NSF CAREER award, the AFOSR Young
Investigator Program Award, the IEEE TCCPS early career award, the
Google Faculty Award, and the Amazon Faculty Research Award.

123



Autonomous Robots

Jeannette Bohg is an Assistant
Professor of Computer Science at
Stanford University. She was a
group leader at the Autonomous
Motion Department (AMD) of the
MPI for Intelligent Systems until
September 2017. Before joining
AMD in January 2012, Jeannette
Bohg was a PhD student at the
Division of Robotics, Perception
and Learning (RPL) at KTH in
Stockholm. In her thesis, she pro-
posed novel methods towards
multi-modal scene understanding
for robotic grasping. She also

studied at Chalmers in Gothenburg and at the Technical University in
Dresden where she received her Master in Art and Technology and
her Diploma in Computer Science, respectively. Her research focuses
on perception and learning for autonomous robotic manipulation and
grasping. She is specifically interesting in developing methods that
are goal-directed, real-time and multi-modal such that they can pro-
vide meaningful feedback for execution and learning. Jeannette Bohg
has received several awards, most notably the 2019 IEEE International
Conference on Robotics and Automation (ICRA) Best Paper Award,
the 2019 IEEE Robotics and Automation Society Early Career Award
and the 2017 IEEE Robotics and Automation Letters (RA-L) Best
Paper Award.

123


	Dynamic multi-robot task allocation under uncertainty and temporal constraints
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Assignment and scheduling
	2.2 Multi-agent sequential decision-making
	2.3 Multi-robot task allocation

	3 Problem formulation
	3.1 Motivating examples
	3.2 Computational challenges

	4 Hierarchical multi-robot task allocation
	4.1 Low-level: single agent policy
	4.2 High-level: multi-agent coordination
	4.3 Stochastic conflict-based allocation (SCoBA)
	4.4 Interleaving planning and execution
	4.5 Coordination graphs

	5 Experiments and results
	5.1 Baselines and evaluation
	5.2 Conveyor belt domain
	5.2.1 Task generation and scenario parameters
	5.2.2 Competitive performance against oracle
	5.2.3 Unsuccessful task penalty
	5.2.4 Scalability

	5.3 Drone delivery domain
	5.3.1 Unsuccessful task penalty
	5.3.2 Scalability


	6 Conclusion
	6.1 Limitations and future work

	Acknowledgements
	References




