
Inverse Preference Learning:
Preference-based RL without a Reward Function

Joey Hejna
Stanford University

jhejna@cs.stanford.edu

Dorsa Sadigh
Stanford University

dorsa@cs.stanford.edu

Abstract

Reward functions are difficult to design and often hard to align with human intent.
Preference-based Reinforcement Learning (RL) algorithms address these problems
by learning reward functions from human feedback. However, the majority of
preference-based RL methods naïvely combine supervised reward models with
off-the-shelf RL algorithms. Contemporary approaches have sought to improve
performance and query complexity by using larger and more complex reward
architectures such as transformers. Instead of using highly complex architectures,
we develop a new and parameter-efficient algorithm, Inverse Preference Learning
(IPL), specifically designed for learning from offline preference data. Our key
insight is that for a fixed policy, the 𝑄-function encodes all information about
the reward function, effectively making them interchangeable. Using this insight,
we completely eliminate the need for a learned reward function. Our resulting
algorithm is simpler and more parameter-efficient. Across a suite of continuous
control and robotics benchmarks, IPL attains competitive performance compared
to more complex approaches that leverage transformer-based and non-Markovian
reward functions while having fewer algorithmic hyperparameters and learned
network parameters. Our code is publicly released1.

1 Introduction

Reinforcement Learning (RL) has shown marked success in fixed and narrow domains such as
simulated control [19] and game-playing [35]. When deploying RL in more complex settings, like in
robotics or interaction with humans, one often runs into a critical bottleneck: the reward function.
Obtaining reward labels in the real world can be complex, requiring difficult instrumentation [45, 53]
and painstaking tuning [52] to achieve reasonable levels of sample efficiency. Moreover, despite
extensive engineering, reward functions can still be exploited by algorithms in ways that do not align
with human values and intents [20], which can be detrimental in safety-critical applications [5].

Instead of hand-designing reward functions, contemporary works have attempted to learn them
through expert demonstrations [1], natural language [32], or human feedback [44, 3, 49]. Recently,
reward functions learned through pairwise comparison queries—where a user is asked which of two
demonstrated behaviors they prefer—have been shown to be effective in both control [12, 44, 30]
and natural language domains [48]. This is often referred to as Reinforcement Learning with Human
Feedback (RLHF). Reward functions learned via RLHF can directly capture human intent, while
avoiding alternative and more expensive forms of human feedback such as expert demonstrations.
Preference-based RL algorithms for RLHF often interleave reward-learning from comparisons with
off-the-shelf RL algorithms.

While preference-based RL methods discover reward functions that are aligned with human pref-
erences, they are not without flaws. Learned reward functions must have adequate coverage of

1https://github.com/jhejna/inverse-preference-learning

Preprint. Under review.

https://github.com/jhejna/inverse-preference-learning

both the state and action space to attain good downstream performance. Consequently, learning the
reward function can be expensive, usually requiring thousands of labeled preference queries. To
mitigate these challenges, recent works have proposed improving learned reward functions by adding
inductive biases before optimization with RL. Hejna and Sadigh [21] pretrain reward functions with
meta-learning. Park et al. [41] use data augmentation. Early et al. [14] and Kim et al. [25] make the
reward function non-Markovian using recurrent or large transformer sequence model architectures
respectively. Such approaches increase the upfront cost of preference-based RL by using additional
data or compute. Moreover, these techniques still combine reward optimization with vanilla RL
algorithms. Ultimately, this just adds an extra learned component to already notoriously delicate RL
algorithms, further increasing hyper-parameter tuning overhead. Preference-based RL approaches
often end up training up to four distinct neural networks independently: a critic (with up to two
networks), an actor, and a reward function. This can be problematic as prediction errors cascade from
the reward function, to the critic, and ultimately the actor causing high variance in downstream per-
formance. To address these issues, we propose a parameter-efficient algorithm specifically designed
for preference-based RL that completely eliminates the need to explicitly learn a reward function. In
doing so, we reduce both complexity and compute cost.

The key insight of our work is that, under a fixed policy, the 𝑄-function learned by off-policy RL
algorithms captures the same information as the learned reward function. For example, both the
𝑄-function and reward function encode information about how desirable a state-action pair is. This
begs the question: why do we need to learn a reward function in the first place? Our proposed solution,
Inverse Preference Learning or IPL, is an offline RL algorithm that is specifically designed for learning
from preference data. Instead of relying on an explicit reward function, IPL directly optimizes the
implicit rewards induced by the learned 𝑄-function to be consistent with expert preferences. At the
same time, IPL regularizes these implicit rewards to ensure high-quality behavior. As a result, IPL
removes the need for a learned reward function and its associated computational and tuning expense.

Experimentally, we find that even though IPL does not explicitly learn a reward function, it achieves
competitive performance with complicated Transformer-based reward learning techniques on offline
Preference-based RL benchmarks with real-human feedback. At the same time, IPL consistently
exhibits lower variance across runs as it does not suffer from the errors associated with querying a
learned reward model. Finally, under a minimal parameter budget, IPL is able to outperform standard
preference-based RL approaches that learn an explicit reward model.

2 Related Work

Our work builds upon literature in reward learning, preference-based RL, and imitation learning.

Reward Learning. Due to the challenges associated with designing and shaping effective reward
signals, several works have investigated various approaches for learning reward functions. A large
body of work uses inverse RL to learn a reward function from expert demonstrations [1, 39, 43],
which are unfortunately difficult to collect [24, 2, 33] or often misaligned with true human preferences
[7, 29]. Subsequently, reward learning techniques using other simpler forms of feedback such as
scalar scores [26] and partial [36] or complete rankings [11, 8] have been developed. One of the
simplest forms of human feedback is pairwise comparisons, where the user chooses between two
options. Often, pairwise comparison queries are sampled using techniques from active learning
[44, 9, 13]. However, to evaluate learned reward functions, these methods rely on either RL or
traditional planning algorithms which are complex and computationally expensive. Our approach
takes a simpler perspective that is parameter-efficient by combining reward and policy learning.
Though it is not the focus of our work, IPL could additionally leverage active learning techniques for
selecting preference data online.

Preference-based Deep Reinforcement Learning. Current approaches to preference based deep RL
train a reward function, and then use that reward function in conjunction with a standard reinforcement
learning algorithm [12, 31, 47]. Several techniques have been developed to improve the learned
reward function, such as pre-training [23, 30], meta-learning [21], data augmentation [41], and non-
Markovian modeling. Within the family of non-Markovian reward modeling [6], recent approaches
have leveraged both LSTM networks [14] and transformers [25] for reward learning. But, these
methods still rely on Markovian offlien RL algorithms such as Implicit Q-Learning (IQL) [27] for
optimization. Ultimately, this makes such approaches theoretically inconsistent as the policy learning

2

component assumes the reward to be only a function of the current state and action. All techniques
for learning the reward function in combination with standard RL methods [19, 46] end up adding
additional hyper-parameter tuning and compute cost. IPL on the other hand, is directly designed for
RL from preference data and eliminates the reward network entirely.

Recently, works in natural language processing have applied ideas from preference-based RL to
tasks such as summarization [48, 50], instruction following [40], and question-answering [38]. The
RLHF paradigm has proven to be powerful even at the massive scale of aligning large language
models. In this regime, learned reward models are massive, making an implicit reward method like
IPL more attractive. While we focus on control in our experiments, we hope our work can inform
future explorations in language domains.

Imitation Learning. Our work build on foundational knowledge in maximum entropy (MaxEnt)
RL [54] and inverse RL [55]. Recent works in MaxEnt inverse RL have used the mapping between
𝑄-functions and reward functions under a fixed policy. Specifically, Garg et al. [17] show that
the regularized MaxEnt inverse RL objective from Ho and Ermon [22] can be re-written using the
𝑄-function instead of a reward function and Al-Hafez et al. [4] stabilize their approach. While the
relationship between 𝑄-functions and rewards has been used for MaxEnt inverse RL, we study this
relationship when learning from preference data. While both problems seek to learn models of expert
reward, the data differs significantly — preference-based RL uses comparisons instead of optimal
demonstrations. This necessitates a greatly different approach.

3 Inverse Preference Learning

In this section, we first describe the preference-based RL problem. Then, we describe how, leveraging
techniques from imitation learning, we can remove the independently learned reward network from
prior methods. This results in a simpler algorithm with lower computational cost and variance in
performance.

3.1 Offline Preference-Based RL

We consider the offline reinforcement learning (RL) paradigm where an agent seeks to maximize
its expected cumulative discounted sum of rewards in a Markov Decision Process (MDP) given an
offline dataset D𝑜 comprised of state, action, and next state tuples (𝑠, 𝑎, 𝑠′) generated by an unknown
behavior policy 𝜇(𝑎 |𝑠). However, unlike in the standard offline RL paradigm, in preference-based
offline RL we do not assume access to reward labels in D𝑜. Instead, the expert reward function
𝑟𝐸 (𝑠, 𝑎) is unknown and must be learned from human feedback. Traditional preference-based RL
methods are thus usually separated into two stages: first, reward learning, where 𝑟𝐸 is estimated, and
second, reinforcement learning, where a policy 𝜋(𝑎 |𝑠) is learned to maximize E𝜋 [

∑︁∞
𝑡=0 𝛾

𝑡𝑟𝐸 (𝑠, 𝑎)]
with 𝛾 as the discount factor. Though our method combines these two phases, we use the building
blocks of each and consequently review them here.

First, similar to prior works [12, 30], we assume access to preference data in the form of binary
comparisons. Each comparison is comprised of two behavior segments, 𝜎 (1) and 𝜎 (2) , and a binary
label 𝑦 indicating which of the two was preferred by an expert. As in Wilson et al. [49], each behavior
segment is simply a snippet of a trajectory of length 𝑘 , or 𝜎 = (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, . . . , 𝑎𝑡+𝑘−1, 𝑠𝑡+𝑘).
Increasing 𝑘 can provide more information per label at the cost of potentially noisier labels. The
label 𝑦 for each comparison is assumed to be generated by an expert according to a Bradley-Terry
Preference model [10]:

𝑃𝐸 [𝜎 (1) ≻ 𝜎 (2)] =
exp

∑︁
𝑡 𝑟𝐸 (𝑠

(1)
𝑡 , 𝑎

(1)
𝑡)

exp
∑︁

𝑡 𝑟𝐸 (𝑠
(1)
𝑡 , 𝑎

(1)
𝑡) + exp

∑︁
𝑡 𝑟𝐸 (𝑠

(2)
𝑡 , 𝑎

(2)
𝑡)

, (1)

where 𝑟𝐸 (𝑠𝑡 , 𝑎𝑡) is again the expert’s unknown underlying reward model. We use the subscript 𝐸
on probability 𝑃 to indicate that the preference distribution above results from the expert’s reward
function. Let the dataset of these preferences be D𝑝 = {(𝜎 (1) , 𝜎 (2) , 𝑦)}. To learn 𝑟𝐸 , prior works in
preference-based RL estimate a parametric reward function 𝑟𝜃 by minimizing the binary-cross-entropy
over D𝑝:

L𝑝 (𝜃) = E𝜎 (1) ,𝜎 (2) ,𝑦∼D𝑝

[︂
𝑦 log 𝑃𝜃

[︂
𝜎 (1) ≻ 𝜎 (2)

]︂
+ (1 − 𝑦) log

(︂
1 − 𝑃𝜃

[︂
𝜎 (1) ≻ 𝜎 (2)

]︂)︂]︂
. (2)

3

Standard Preference-Based RL Inverse Preference Learning

Phase 1
Reward Learning

Phase 2
Reinforcement Learning

𝑟𝜃

𝜎(1)

𝜎(2)

Black Box
RL

Algorithm

𝜋(𝑎|𝑠)
𝑄(𝑠, 𝑎)

Single Learning Phase

𝑉𝜋(𝑠)

𝑟(𝑠, 𝑎) = 𝑄 𝑠, 𝑎 − 𝛾𝑉𝜋(𝑠′)

Regularization

Preference
Distribution

Implicit Reward

𝜎(1)

𝜎(2)

Figure 1: A depiction of the difference between standard preference-based RL methods and Inverse
Preference Learning. Standard preference-based RL first learns a reward function, then optimizes it
with a blockbox RL algorithm. IPL trains a 𝑄 function to directly fit the expert’s preferences. This is
done by aligning the implied reward model with the expert’s preference distribution and applying
regularization.

This objective results from simply minimizing ED𝑝
[𝐷KL (𝑃𝐸 | |𝑃𝜃)], the KL-divergence between

the expert preference model and the one induced by 𝑟𝜃 , effectively aligning it with the expert’s
preferences. We note that some other works in preference-based RL focus on learning an improved
model 𝑟𝜃 to address the reward learning part of the problem [41, 25]. However, these methods still
use off-the-shelf RL algorithms for the policy learning part of the problem.

Common approaches to offline RL seek to learn conservative policies that do not stray too far away
from the distribution of data generated by 𝜇(𝑎 |𝑠). This is critical to prevent the policy 𝜋 from reaching
out-of-distribution states during deployment which can be detrimental to performance. A common
solution to this problem is to use a constrained objective [28]. In our derivations, we focus on the
constrained objective from Garg et al. [18]:

max
𝜋
E𝜋

[︄ ∞∑︂
𝑡=𝑡 ′

𝛾𝑡
(︃
𝑟 (𝑠𝑡 , 𝑎𝑡) − 𝛼 log

𝜋(𝑎 |𝑠)
𝜇(𝑎 |𝑠)

)︃]︄
. (3)

The second term subtracted from the reward 𝑟 enforces a KL-divergence constraint with the behavior
policy 𝜇, encouraging the policy to remain near the dataset. Off-policy RL algorithms commonly use
the contractive soft-Bellman operator,

(B 𝜋
𝑟 𝑄) (𝑠, 𝑎) =𝑟 (𝑠, 𝑎) + 𝛾E𝑠′∼𝑝 (· |𝑠 |𝑎) [𝑉 𝜋 (𝑠′)],

where 𝑉 𝜋 (𝑠) = E𝑎∼𝜋 (· |𝑠)
[︃
𝑄(𝑠, 𝑎) − 𝛼 log

𝜋(𝑎 |𝑠)
𝜇(𝑎 |𝑠)

]︃
, (4)

for policy evaluation where 𝑄 is the state-action value function and 𝑉 is the state value function.
Recent works in offline RL have shown that the optimal 𝑄-function, 𝑄∗, for Equation (3) can be
attained directly using the optimal soft-Bellman operator B∗

𝑟 via the closed form optimal soft-value
function 𝑉∗ (𝑠) = 𝛼 logE𝑎∼𝜇 (· |𝑠)

[︁
𝑒𝑄 (𝑠,𝑎)/𝛼]︁ [18, 51]. After repeatedly applying B∗

𝑟 , the policy can
easily be extracted from 𝑄.

To learn the optimal policy, two-phase preference based RL methods rely on recovering the optimal
𝑟𝐸 in the reward learning phase before running offline RL. This potentially propagates errors from
the estimated 𝑟𝜃 to learned 𝑄-function and ultimately learned policy 𝜋. In practice, it would be more
efficient to eliminate the need for two separate stages. In the next section, we show how this can be
done by establishing a bijection between reward functions 𝑟 and 𝑄-functions.

3.2 Removing The Reward Function

In this section, we formally describe how the reward function can be removed from offline
preference-based RL algorithms. Our key insight is that the 𝑄-function learned by off-policy RL
algorithms in fact encodes the same information as the reward function 𝑟 (𝑠, 𝑎). Consequently, it is

4

unnecessary to learn both. First, we show how the reward function can be re-written in terms of the 𝑄
function allowing us to compute the preference model 𝑃𝑄 induced by the 𝑄-function. Then, we derive
an objective that simultaneously pushes 𝑄 to fit the expert’s preferences while also remaining optimal.

Consider fitting a 𝑄 function via the Bellman operator B 𝜋
𝑟 for a fixed policy 𝜋 until convergence

where B 𝜋
𝑟 𝑄 = 𝑄. Here, to encode the cumulative discounted rewards when acting according to the

policy, the 𝑄-function depends on both 𝑟 and 𝜋. This dependence, however, is directly disentangled
by the Bellman equation. By rearranging it (Equation (4)), we can solve for the reward function in
terms of 𝑄 and 𝜋. This yields the so-called inverse soft-Bellman operator:

(T 𝜋𝑄) (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝛾E𝑠′ [𝑉 𝜋 (𝑠′)] . (5)

In fact, it has been shown that for a fixed policy 𝜋, the soft inverse-Bellman operator is bijective,
implying a one-to-one correspondence between the 𝑄 function and the reward function [17]. In-
tuitively, this makes sense: when holding the policy constant, only the reward function affects 𝑄.
We abbreviate the evaluation of (T 𝜋𝑄) (𝑠, 𝑎) as 𝑟𝑄𝜋 (𝑠, 𝑎) to indicate that 𝑟𝑄𝜋 is the unique implicit
reward function induced by 𝑄 𝜋 . Prior works in imitation learning leverage the inverse soft-Bellman
operator to measure how closely the implicit reward model 𝑟𝑄𝜋 aligns with expert demonstrations.
Our key insight is that this equivalence can also be used to directly measure how closely our 𝑄
function aligns with the expert preference model without ever directly learning 𝑟.

Consider the Bradley-Terry preference model in Equation (1). For a fixed policy 𝜋 and its correspond-
ing 𝑄 𝜋 , we can obtain the preference model of the implicit reward function 𝑃𝑄𝜋 [𝜎 (1) ≻ 𝜎 (2)] by
substituting the inverse soft-Bellman operator into Equation (1) as follows:

𝑃𝑄𝜋 [𝜎 (1) > 𝜎 (2)] =
exp

∑︁
𝑡 (T 𝜋𝑄) (𝑠 (1)𝑡 , 𝑎

(1)
𝑡)

exp
∑︁

𝑡 (T 𝜋𝑄) (𝑠 (1)𝑡 , 𝑎
(1)
𝑡) + exp

∑︁
𝑡 (T 𝜋𝑄) (𝑠 (2)𝑡 , 𝑎

(2)
𝑡)

. (6)

This substitution will allow us to measure the difference between the preferences implied by 𝑄 𝜋 and
those of the expert. To minimize the difference, we can propagate gradients through the preference
modeling loss (Equation (2)) and the implicit preference model 𝑃𝑄𝜋 (Equation (6)) to 𝑄—just as
we would for a parameterized reward estimate 𝑟𝜃 . Unfortunately, naïvely performing the substitution
is insufficient to solve the objective in Equation (3). This is because we have used an arbitrary policy
𝜋, not the optimal one, for converting from 𝑄-values to rewards. Next, we show how we can form the
optimal inverse soft-Bellman operator T ∗ to ensure the policy extracted from the learned 𝑄-function
is indeed optimal.

The optimal inverse soft-Bellman operator corresponds to the standard optimal soft-Bellman operator
B∗
𝑟 , which is formed by using the optimal soft-value function instead of 𝑉 𝜋 (𝑠) [18]. Thus to construct

T ∗ we substitute the form of 𝑉 used in B∗
𝑟 into Equation (5):

(T ∗𝑄) (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝛾E𝑠′ [𝑉∗ (𝑠′)] = 𝑄(𝑠, 𝑎) − 𝛾E𝑠′
[︂
𝛼 logE𝑎∼𝜇 (· |𝑠)

[︂
𝑒𝑄 (𝑠,𝑎)/𝛼

]︂]︂
.

Above we use the specific form of 𝑉∗ (𝑠) for our KL-constrained objective, but in practice others can
be used for different objectives. This makes our algorithm amenable to nearly any RL algorithm, like
SAC [19], so long as its value estimates converge to those of the desired policy. Thus in practice we
simply update our estimates of 𝑉 according to any offline RL algorithm that converges to an optimal
policy. For our KL-constrianed objective, this means fitting 𝑉 according to the linear exponential
(linex) loss function from Extreme Q-Learning (XQL) [18]. In Algorithm 1 we show this step written
out. Thus, to fit the optimal 𝑄-function, we minimize the following loss function:

L𝑝 (𝑄) = E𝜎 (1) ,𝜎 (2) ,𝑦∼D𝑝

[︂
𝑦 log 𝑃𝑄∗ [𝜎 (1) ≻ 𝜎 (2)] + (1 − 𝑦) log(1 − 𝑃𝑄∗ [𝜎 (1) > 𝜎 (2))

]︂
.

Unfortunately, optimizing this objective alone leads to poor results due to the unconstrained nature
of the implicit reward function. In practice, explicit reward learning approaches often constrain the
learned reward function with either Tanh activations [30] or normalization [25]. These techniques,
however, are inapplicable to our implicit algorithm. Instead, we introduce L2 regularization to the
implicit reward, or (𝑟𝑄∗ (𝑠, 𝑎))2 = ((T ∗𝑄) (𝑠, 𝑎))2, as is commonly done in imitation learning [17, 4]
to prevent unbounded reward values. We find that this also has a number of practical benefits. First,
the solution to the Bradley-Terry preference model is non-unique, as any constant shift in all reward
values does not change the probability of preferring any given segment. L2 regularization makes the
solution unique and centers the induced reward near zero, which has shown to be beneficial for RL

5

[15]. Second, regularization encourages more realistic implicit rewards. For example, consider a
reward function in continuous control that changes from -100 to 100 when one a small perturbation
of size 𝜖 is applied to 𝑠 and 𝑎, but changes back to 100 when another perturbation of size 𝜖 is
applied. While such a reward function seems unrealistic as it is unduly affected by small changes
in states and actions, it is a completely valid solution of the inverse soft-Bellman operator. Adding
L2 regularization discourages this discontinuous behavior by penalizing large deviations in implied
reward unless they drastically reduce the preference loss. Finally, the benefits of implicit reward
regularization naturally propagate to the learned 𝑄-function. L2 regularization explicitly penalizes
neighboring 𝑄 and 𝑉 values from getting too far, smoothing the value landscape. This helps prevent
exploding 𝑄-values as estimates of 𝑉 typically increase throughout the course of learning. Thus, to
encourage regularization across the entire state and action space, we use the following regularization
objective over 𝑄 which uses data from both D𝑝 and D𝑜:

L𝑟 (𝑄) = E𝑠,𝑎∼D𝑜∪D𝑝

[︁
((T ∗𝑄) (𝑠, 𝑎))2]︁ .

Our final 𝑄-learning objective thus the sum of the preference loss function under T ∗𝑄 and the
regularization loss, or L(𝑄) = L𝑝 (𝑄) + 𝜆L𝑟 (𝑄), where 𝜆 is a hyper-parameter that controls the
regularization strength. L𝑝 (𝑄) encourages the 𝑄 function to implicitly match the the expert’s
preference model under the optimal policy. L𝑟 (𝑄) makes the solution unique and smooths it. We find
that weighting the regularization equally between D𝑝 and D𝑜 performs well. Note that L𝑝 (𝑄) is
only computed on preference data D𝑝 . In practice, optimizing L𝑝 (𝑄) requires estimating (T ∗𝑄) and
consequently 𝑉∗. Thus, during optimization, we alternate between updating our learned 𝑄-network
and a learned value 𝑉-network towards 𝑉∗. After 𝑄 and 𝑉 have converged, we can extract the policy
using the closed form relationship 𝜋∗ (𝑎 |𝑠) ∝ 𝜇(𝑎 |𝑠) exp ((𝑄∗ (𝑠, 𝑎) −𝑉∗ (𝑠))/𝛼) for KL-constrained
RL as in Garg et al. [18], Peng et al. [42].

Algorithm 1: IPL Algorithm (XQL Variant)
Input :D𝑝 , D𝑜, 𝜆, 𝛼
for 𝑖 = 1, 2, 3, ... do

Sample batches 𝐵𝑝 ∼ D𝑝 , 𝐵𝑜 ∼ D𝑜

Update 𝑄: min𝑄 E𝐵𝑝
[L𝑝 (𝑄)] + 𝜆E𝐵𝑝∪𝐵𝑜

[L𝑟 (𝑄)]
Update 𝑉 : min𝑉 E𝐵𝑝∪𝐵𝑜

[𝑒𝑧 − 𝑧 − 1]
where 𝑧 = 𝑄(𝑠, 𝑎) −𝑉 (𝑠))/𝛼

Finally, extract 𝜋(𝑎 |𝑠) via:
max𝜋 ED𝑝∪D𝑜

[𝑒 (𝑄 (𝑠,𝑎)−𝑉 (𝑠))/𝛼 log 𝜋(𝑎 |𝑠)]

We find that in the presence of additional
offline data in D𝑜, updating the policy
and/or value function with data from both
D𝑜 and D𝑝 performs better, just like with
the regularization term. Ultimately, our
optimization scheme learns a 𝑄 function
for an optimal policy whose implied re-
ward is consistent with 𝑟𝐸 , up to regular-
ization, without ever learning the reward
network. Practically, this has a number of
benefits. Learning a reward network re-
quires more parameters and a completely
separate optimization loop, increasing compute requirements. Moreover, an explicit reward model
introduces a whole new suite of hyper-parameters that need to be tuned including the model architec-
ture, capacity, learning rate, batch size, and stopping criterion. In fact, because human preference data
is so difficult to collect, many approaches opt to use simple accuracy thresholds instead of validation
criteria to decide when to stop training 𝑟𝜃 [30]. All of these components make preference-based
RL unreliable and high-variance. On the other hand, our method completely removes all of these
parameters in exchange for a single 𝜆 hyper-parameter that controls the regularization strength.
Despite removing these components, in the next section we will experimentally demonstrate that IPL
performs just as well as explicit reward approaches.

4 Experiments

In this section, we aim to answer the following questions: First, how does IPL compare to prior
preference-based RL algorithms on standard benchmarks? Second, how does IPL perform in
extremely data-limited settings? And finally, how efficient is IPL in comparison to two-phase
preference-based RL methods?

4.1 Setup

As discussed in the previous section, though we use a KL-constrained objective for our theoretical
derivation, in practice we can construct versions of IPL based on any offline RL algorithm. In our
experiments we evaluate IPL with Implicit Q-Learning (IQL) [27], since it has been used in prior

6

Dataset
IQL MR LSTM PT MR IPL

(Oracle) (from [25]) (from [25]) (from [25]) (reimpl.) (Ours)
hop-m-r 83.06 ± 15.80 11.56 ± 30.27 57.88 ± 40.63 84.54 ± 4.07 70.20 ± 35.0 73.57 ± 6.67

hop-m-e 73.55 ± 41.47 57.75 ± 23.70 38.63 ± 35.58 68.96 ± 33.86 102.97 ± 5.55 74.52 ± 10.11

walk-m-r 73.11 ± 8.07 72.07 ± 1.96 77.00 ± 3.03 71.27 ± 10.30 68.79 ± 5.64 59.92 ± 5.11

walk-m-e 107.75 ± 2.02 108.32 ± 3.87 110.39 ± 0.93 110.13 ± 0.21 109.07 ± 1.30 108.51 ± 0.60

lift-ph 96.75 ± 1.83 84.75 ± 6.23 91.50 ± 5.42 91.75 ± 5.90 98.84 ± 2.33 97.60 ± 2.94

lift-mh 86.75 ± 2.82 91.00 ± 2.82 90.75 ± 5.75 86.75 ± 5.95 90.04 ± 4.45 87.20 ± 5.31

can-ph 74.50 ± 6.82 68.00 ± 9.13 62.00 ± 10.90 69.67 ± 5.89 76.40 ± 3.67 74.8 ± 2.40

can-mh 56.25 ± 8.78 47.50 ± 3.51 30.50 ± 8.73 50.50 ± 6.48 53.6 ± 7.86 57.6 ± 5.00

Avg Std 10.95 10.2 13.87 9.08 8.23 4.77

Table 1: Average normalized scores of all baselines on human-preference benchmarks from Kim
et al. [25]. For the D4RL locomotion tasks “hop” corresponds to hopper, “m” to medium (training
the data generating agent to 1/3 expert performance), “r” to replay buffer data, and “e” to data from
the end of training. For the Robomimic tasks lift and can, “ph” corresponds to proficient human data
and “mh” to multi-human data of differing optimality. The first four columns are taken from Kim
et al. [25]. “reimpl.” is our reimplementation of Markovian Reward with IQL. The “Avg Std” row
shows the average standard deviation across all eight environments. We run five seeds and report
the final performance at the end of training like Kostrikov et al. [27]. On some tasks IPL achieves
higher performance earlier in training, which is not reflected above (See Appendix). We find that IPL
outperforms PT on many environments, and also performs similarly to our implementation of MR
despite not training a reward function.

offline preference-based RL works. This allows us to directly compare IPL by isolating its implicit
reward component and using the same exact hyper-parameters as prior works. Using IPL with IQL
amounts to updating the value function according to the asymmetric expectile loss function instead of
the linex loss function. Concretely, this can be done by replacing the value update in Algorithm 1
with min𝑉 E𝐵𝑝∪𝐵𝑜

[︁
|𝜏 − 𝟙(𝑄(𝑠, 𝑎) −𝑉 (𝑠) < 0) | (𝑄(𝑠, 𝑎) −𝑉 (𝑠))2]︁ where 𝜏 is the expectile.

Inspired by Park et al. [41], we introduce data augmentations that sample sub-sections of behavior
segments 𝜎 during training. While such augmentations are inapplicable to non-Markovian reward
models, we find that they boost performance for Markovian reward models while also reducing the
total number of state-action pairs per batch of preference data. This is important as IPL needs data
from both D𝑝 and D𝑜 to regularize the implicit reward function. Additional experiment details and
hyper-parameters can be found in the Appendix.

4.2 How does IPL perform on preference-based RL benchmarks?

We compare IPL to other offline preference-based RL approaches on D4RL Gym Locomotion [16] and
Robosuite robotics [34] datasets with real-human preference data from Kim et al. [25]. We compare
IQL-based IPL, with the same hyper-parameters, to various baselines that learn a reward model 𝑟𝜃
before optimization with IQL. Markovian Reward or MR denotes using a standard Markovian MLP
reward model, like those used in Christiano et al. [12] and Lee et al. [30]. Non-Markovian Reward or
NMR denotes using the non-Markovian LSTM based reward model from Early et al. [14]. Preference
Transformer (PT) is a state-of-the-art approach that leverages a large transformer architecture to learn
a non-Markovian reward and preference weighting function. Finally, we compare against our own
implementation of IQL with a Markovian Reward function that use the same data augmentation as IPL.

Our results are summarized in Table 1. Starting with the first column, we see that preference-based
RL methods are able to match IQL with the ground truth reward function in many cases. On,
several tasks, however, the MR implementation from Kim et al. [25] fairs rather poorly. The non-
Markovian methods, (NMR and PT) improve performance. It is worth noting that on many tasks our
implementation of a MR (fifth column) performs far better than reported in Kim et al. [25], likely due
to our careful tuning of 𝑟𝜃 and use of data-augmentations. Our method, IPL, achieves competitive
performance across the board.

In general, IPL performs on-par or better than both our implementation of MR and PT in most
datasets despite not learning a separate reward network. Specifically, IPL has the same performance

7

Preference Queries 500 1000 2000 4000

Button Press MR 66.0 ± 8.0 49.3 ± 12.1 54.7 ± 26.8 78.3 ± 9.2

IPL 53.3 ± 8.5 60.1 ± 12.8 70.2 ± 2.5 90.2 ± 6.5

Drawer Open MR 65.9 ± 9.9 87.2 ± 5.2 89.7 ± 6.4 94.6 ± 3.9

IPL 62.1 ± 4.8 78.7 ± 12.4 89.5 ± 5.0 96.6 ± 1.3

Sweep Into MR 33.0 ± 5.7 46.2 ± 6.0 63.2 ± 13.7 70.8 ± 7.9

IPL 34.5 ± 2.3 48.2 ± 7.2 58.8 ± 7.4 65.9 ± 6.7

Plate Slide MR 54.6 ± 5.3 57.2 ± 4.5 23.9 ± 18.8 55.2 ± 3.0

IPL 52.9 ± 4.8 55.8 ± 2.2 55.4 ± 3.1 54.9 ± 2.8

Assembly MR 0.6 ± 0.7 0.7 ± 1.0 0.0 ± 0.0 2.6 ± 2.8

IPL 0.9 ± 0.6 1.5 ± 1.5 1.7 ± 1.9 5.5 ± 5.2

Avg Std MR 5.9 5.76 13.14 5.36
IPL 4.2 7.22 3.98 4.5

Table 2: Results on five MetaWorld tasks at four different preference data scales. We run five seeds
for each method, and more details can be found in the Appendix. IPL performs the same or better
than IQL with a Markovian reward model on the majority of tasks and preference data scales without
training a reward model.

or better performance than our MR implementation on six of eight tasks. More importantly, IPL does
extremely well in comparison to Preference Transformer’s reported results. On five of eight tasks IPL
performs better than PT while having over 10 times fewer parameters, making IPL far more efficient.
To be consistent with Kim et al. [25], we report results after a million training steps but performance
for IPL often peaks earlier (see learning curves in the Appendix). For example, with early stopping
IPL also outperforms PT on “hop-m-r”. We posit that this is because the 𝑄-function in IPL is tasked
with both fitting the expert’s preference model and optimal policy simultaneously, making both the
policy and reward function non-stationary during training. In some datasets, this was more unstable.

IPL also has the lowest average standard-deviation across seeds, meaning it yields more consistent
results than explicit reward methods. For standard two-phase preference-based RL algorithms, errors
in the reward model are propagated to and exacerbated by the 𝑄 function. IPL circumvents this
problem by not explicitly learning the reward.

4.3 How does IPL scale with Data?

Collecting preference comparisons is often viewed as the most expensive part of preference-based RL.
To investigate how well IPL performs in data limited settings, we construct scripted preference datasets
of four different sizes for five tasks from the MetaWorld benchmark [52] used in prior Preference-
based RL works [30, 21]. We then train on the preference data D𝑝 by setting D𝑜 = {(𝑠, 𝑎, 𝑠′) ∈ D𝑝}
and use the same hyper-parameters for all environments and methods where applicable. Our results
are summarized in Table 2. Again, IPL is a strong reward-free baseline. We find that at all data scales,
IPL performs competitively to our implementation of MR (IQL with a learned Markovian reward)
and consistently outperforms it in Button Press and Assembly. Increasing the amount of preference
data generally improves performance across the board. However, as we generate queries uniformly at
random some preference datasets may be easier to learn from than others, leading to deviations form
this trend in some cases. As in the benchmark results in Table 1, IPL exhibits lower variance across
seeds and tasks, in this case at three of four data scales.

4.4 How efficient is IPL?

One benefit of IPL over other Preference-based RL methods is its parameter efficiency. By removing
the reward network, IPL uses fewer parameters than other methods while achieving the same perfor-
mance. In Table 3, we show the number of parameters for each method used in the last two sections.
Preference Transformer uses over ten times more parameters than IPL, and the LSTM-based NMR
model from Early et al. [14] uses nearly twice as many. When dealing with a limited compute or
memory budget, this can be important. To exacerbate this effect, we consider an extremely parameter
efficient version of IPL, denoted “IPL (64)” in Table 3, based on Advantage Weighted Actor Critic
(AWAC) [37] which eliminates the second critic and value networks used in IQL [27] and uses a

8

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Parameter Equalization

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
MR Reward Steps

1000
10000
100000

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
IPL Regularization Weight

0.4
2
10

MetaWorld Drawer Open Ablations with 4000 Queries

MR (35) MR (64) IPL (64)

Figure 2: Left: Performance comparison with different parameter numbers. MR (35) has the same
parameter budget as IPL (64). MR (64) has over twice as many. We see that with the same number
of parameters as IPL, MR is unable to adequetly fit the data and performs poorly. Middle: MR
when the reward function is trained for a varying number of steps – with too few the reward model
under-fits, and with too many it over-fits, both leading to worse performance. Right: IPL with
different regularization strengths. On the drawer open task, performance is largely unaffected. For
more ablations, see the Appendix.

two-layer 64-dimensional MLP. We then compare this parameter-efficient IPL to MR with the same
parameter budget which results in “MR (35)”, a 35-dimensional MLP. Results are depicted on the left
of Fig. 2. MR trained with a smaller network is unable to adequately fit the data, resulting in lower per-
formance. Only after increasing the network size past that of IPL can MR begin to match performance.

Method Params
PT 2942218
NMR 508746
MR 348426
IPL 278537
MR (64) 34892
IPL (64) 14025
MR (35) 14012

Table 3: Parameter counts for
different methods. The bottom
three rows are for the limited
parameter budget experiments
in Section 4.4.

Aside from parameter efficiency, IPL is also “hyper-parameter effi-
cient”. By removing the reward network, IPL removes a whole set
of hyper-parameters associated with two phase preference based RL
methods, like reward network architecture, learning rate, stopping
criterion, and more. In the middle of Fig. 2 we show how the perfor-
mance of MR is affected when the reward function is over or under fit.
Choosing the correct number of steps to train the reward model usu-
ally requires collecting a validation set of preference data, which is
costly to obtain. Instead of this, IPL only has a single regularization
parameter, 𝜆. The right side of Fig. 2 shows the sensitivity of IPL to 𝜆.
We find that in many cases, varying 𝜆 has little effect on performance
unless it is perturbed by a large amount. Due to space constraints,
extended results for this section are included in the Appendix.

5 Conclusion

Summary. We introduce Inverse Preference Learning, a novel algorithm for offline preference-based
RL that avoids learning a reward function. Our key insight is to leverage the inverse soft-Bellman
operator, which computes the mapping from 𝑄-functions to rewards under a fixed policy. The IPL
algorithm trains a 𝑄-function to regress towards the optimal 𝑄∗ while at the same time admitting
implicit reward values that are consistent with an expert’s preferences. Even though IPL does not re-
quire learning a separate reward network, on robotics benchmarks it attains competitive performance
with preference-based RL baselines that use twice to ten-times the number of model parameters.

Limitations and Future Work. A number of future directions remain. Specifically, the implicit
reward function and policy learned by IPL are both non-stationary during training, which sometimes
causes learning to be more unstable than with a fixed reward function. This is a core limitation future
work could address by better mixing policy improvement and preference-matching steps to improve
stability. More broadly, implicit reward preference-based RL methods are not limited to continuous
control or binary feedback. Applying implicit reward techniques to other forms of feedback or
extending IPL to language-based RLHF tasks remain exciting future directions.

9

Acknowledgments and Disclosure of Funding

This work was supported by ONR, DARPA YFA, Ford, and NSF Awards #1941722 and #2218760.
JH is supported by by the National Defense Science Engineering Graduate (NDSEG) Fellowship
Program. We would additionally like to thank Div Garg and Chris Cundy for useful discussions.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In International Conference on Machine Learning, 2004.

[2] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L Thomaz. Keyframe-based learning from
demonstration. International Journal of Social Robotics, 4(4):343–355, 2012.

[3] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 2011.

[4] Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. LS-IQ: Implicit
reward regularization for inverse reinforcement learning. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
o3Q4m8jg4BR.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[6] Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In National
Conference on Artificial Intelligence, 1996.

[7] Chandrayee Basu, Qian Yang, David Hungerman, Mukesh Sinahal, and Anca D Draqan. Do you
want your autonomous car to drive like you? In 2017 12th ACM/IEEE International Conference
on Human-Robot Interaction (HRI, pages 417–425. IEEE, 2017.

[8] Erdem Bıyık, Daniel A Lazar, Dorsa Sadigh, and Ramtin Pedarsani. The green choice: Learning
and influencing human decisions on shared roads. In 2019 IEEE 58th conference on decision
and control (CDC), pages 347–354. IEEE, 2019.

[9] Erdem Biyik, Nicolas Huynh, Mykel J. Kochenderfer, and Dorsa Sadigh. Active preference-
based gaussian process regression for reward learning. In Proceedings of Robotics: Science and
Systems (RSS), July 2020.

[10] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[11] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[12] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, 2017.

[13] Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward
learning with a novel acquisition function. Autonomous Robots, 39(3):389–405, 2015.

[14] Joseph Early, Tom Bewley, Christine Evers, and Sarvapali Ramchurn. Non-markovian reward
modelling from trajectory labels via interpretable multiple instance learning. In Advances in
Neural Information Processing Systems, 2022.

[15] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1etN1rtPB.

10

https://openreview.net/forum?id=o3Q4m8jg4BR
https://openreview.net/forum?id=o3Q4m8jg4BR
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB

[16] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[17] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-
learn: Inverse soft-q learning for imitation. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=Aeo-xqtb5p.

[18] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent
RL without entropy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=SJ0Lde3tRL.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

[20] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

[21] Joey Hejna and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop RL. In
Conference on Robot Learning, 2022.

[22] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[23] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. In Advances in Neural Information
Processing Systems, 2018.

[24] Rebecca P Khurshid and Katherine J Kuchenbecker. Data-driven motion mappings improve
transparency in teleoperation. Presence, 24(2):132–154, 2015.

[25] Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee.
Preference transformer: Modeling human preferences using transformers for rl. In International
Conference on Learning Representations, 2023.

[26] W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforce-
ment. In 2008 7th IEEE international conference on development and learning, pages 292–297.
IEEE, 2008.

[27] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022.

[28] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1179–
1191. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

[29] Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P Losey, and Dorsa Sadigh.
When humans aren’t optimal: Robots that collaborate with risk-aware humans. In 2020 15th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 43–52. IEEE,
2020.

[30] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. In International
Conference on Machine Learning, 2021.

[31] Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-
based reinforcement learning. In Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (round 1), 2021.

[32] Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in
context. arXiv preprint arXiv:2204.02515, 2022.

11

https://openreview.net/forum?id=Aeo-xqtb5p
https://openreview.net/forum?id=SJ0Lde3tRL
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf

[33] Dylan P Losey, Krishnan Srinivasan, Ajay Mandlekar, Animesh Garg, and Dorsa Sadigh.
Controlling assistive robots with learned latent actions. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 378–384. IEEE, 2020.

[34] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning
from offline human demonstrations for robot manipulation. In Conference on Robot Learning
(CoRL), 2021.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[36] Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards from
rankings. In Conference on Robot Learning, pages 342–352. PMLR, 2022.

[37] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. {AWAC}: Accelerating
online reinforcement learning with offline datasets, 2021. URL https://openreview.net/
forum?id=OJiM1R3jAtZ.

[38] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[39] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, 2000.

[40] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[41] Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In International Conference on Learning Representations, 2022.

[42] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[43] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI,
volume 7, pages 2586–2591, 2007.

[44] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems, 2017.

[45] C. Schenck and D. Fox. Visual closed-loop control for pouring liquids. In International
Conference on Robotics and Automation, 2017.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[47] Daniel Shin and Daniel S Brown. Offline preference-based apprenticeship learning. arXiv
preprint arXiv:2107.09251, 2021.

[48] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback.
arXiv preprint arXiv:2009.01325, 2020.

[49] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. In Advances in Neural Information Processing Systems, 2012.

[50] Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and
Paul Christiano. Recursively summarizing books with human feedback. arXiv preprint
arXiv:2109.10862, 2021.

12

https://openreview.net/forum?id=OJiM1R3jAtZ
https://openreview.net/forum?id=OJiM1R3jAtZ

[51] Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan,
and Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value
regularization. In International Conference on Learning Representations, 2023.

[52] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, 2020.

[53] Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash
Kumar, and Sergey Levine. The ingredients of real world robotic reinforcement learning. In
International Conference on Learning Representations, 2020.

[54] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[55] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

13

Appendix

We divide the appendix into four different sections following the results section. Each section
additionally provides hyper-parameters used for IPL in that section. The first section, setup, contains
details information on the experimental setup and hyper-parameters used. The second section on
benchmark results gives full learning curves for the experiments in Section 4.2. The third section
provides full learning curves for the MetaWorld and Data-scaling experiments. The final Appendix
section provides extended ablations.

A Setup

Here we provide the full algorithmic outline of IPL using Implicit Q-Learning [27] that
mimics our implementation. While in practice the policy 𝜋 could be extracted at the
end of training, we do it simultaneously as in [27] in order to construct learning curves.

Algorithm 2: IPL Algorithm (IQL Variant)
Input :D𝑝 , D𝑜, 𝜆, 𝛼
for 𝑖 = 1, 2, 3, ... do

Sample batches 𝐵𝑝 ∼ D𝑝 , 𝐵𝑜 ∼ D𝑜

Update 𝑄: min𝑄 E𝐵𝑝
[L𝑝 (𝑄)] + 𝜆E𝐵𝑝∪𝐵𝑜

[L𝑟 (𝑄)]
Update 𝑉 : min𝑉 E𝐵𝑝∪𝐵𝑜

[︁
|𝜏 − 𝟙(𝑄(𝑠, 𝑎) −𝑉 (𝑠)) | (𝑄(𝑠, 𝑎) −𝑉 (𝑠))2]︁

Update 𝜋: max𝜋 ED𝑝∪D𝑜
[𝑒𝛽 (𝑄 (𝑠,𝑎)−𝑉 (𝑠)) log 𝜋(𝑎 |𝑠)]

Note that above we write the temperature parameter 𝛽 as done in IQL, instead of how it is usually
done, using 𝛼 in the denominator [18, 42].

When sampling batches of preference data 𝐵𝑝 ∼ D𝑝, we take sub-samples of each segment 𝜎 of
length 𝑠. For a sampled data point (𝜎 (1) , 𝜎 (2) , 𝑦), we sample start ∼ Unif[0, 1, 2, ...𝑘 − 𝑠] and then
let take 𝜎 = 𝑠start, 𝑎start, ..., 𝑠start+𝑠 . We use the same start value across the entire batch.

Given that we run experiments using MLPs, all of our experiments were run on CPU compute
resources. Each seed for each method requires one CPU core (two hyper-threads) and 8 Gb of
memory.

B Benchmark Results

Here we provide details for our experiments on the preference-based RL benchmark from Kim et al.
[25]. We use the same hyperparameters as Kim et al. [25] and Kostrikov et al. [27] where applicable
as shown in Table 4.

Gym-Mujoco Locomotion. Hopper and Walker2D agents are tasked with learning locomotion
policies from datasets of varying qualities taken from the D4RL [16] benchmark. Preference datasets
were constructed by Kim et al. [25] by uniformly sampling queries and labeling a subset of them. For
all locomotion tasks the segment length. Preference datasets for “medium” quality offline datasets
contain 500 queries, while preference datasets for “expert” quality offline datasets contain 100 queries.
Segment lengths 𝑘 = 100 for all datasets, and were subsampled to length 𝑠 = 64 by IPL and our MR
(reimplementation). Evaluation was preformed over 10 episodes every 5000 steps. Full learning
curves are shown in Fig. 3.

RoboMimic. The RoboMimic datasets contain interaction data of two types: ph — proficient human
and mh – multihuman. The multi-human data was collected from human demonstrators of mixed
quality. The robot is tasked with learning how to lift a cube (lift) or pick and place a can (can).
Preference datasets were again taken directly from Kim et al. [25]. Preference datasets of size 100
with segment lengths 𝑘 = 50, randomly sub-sampled to length 𝑠 = 32 were used for the ph datasets.
Preference datasets of size 500 with segment lengths 𝑘 = 100, randomly sub-sampled to length 𝑠 = 64
were used for the mh datasets. Evaluation was performed over 25 episodes every 50000 steps. Full
learning curves are shown in Fig. 4.

14

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Hopper Medium Replay

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.2

0.4

0.6

0.8

1.0

1.2
Hopper Medium Expert

0.0 0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.3

0.4

0.5

0.6

0.7

Sc
or

e

Walker2D Medium Replay

0.0 0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.6

0.7

0.8

0.9

1.0

1.1

Walker2D Medium Expert

D4RL Mujoco Locomotion with Human Preferences

PT MR MR (reimpl.) IPL

Figure 3: Full learning curves on the D4RL locomotion benchmark with human preferences.

Common Hyperparameters MR Hyperparameters
Parameter Locomotion Robomimic Parameter Locomotion Robomimic
𝑄,𝑉, 𝜋 Arch 2x 256d 2x 256d 𝑟𝜃 Arch 2x 256d 2x 256d
Learning Rate 0.0003 0.0003 𝑟𝜃 LR 0.0003 0.0003
Optimizer Adam Adam 𝑟𝜃 Optimizer Adam Adam
𝛽 3.0 0.5 𝑟𝜃 Steps 20k 20k
𝜏 0.7 0.7
D𝑜 Batch Size 256 256
D𝑝 Batch Size 8 8
Training Steps 1 Mil 1 Mil IPL Hyperparameters
𝑘 100 100, 50 Parameter Locomotion Robomimic
Subsample 𝑠 64 64, 32 𝜆 0.5 4

Table 4: Hyperparameters used for the benchmark experiments. We can see that IPL has fewer
hyperparameters.

C Data Scaling Results

Experiments for data scaling were conducted on the MetaWorld benchmark from Yu et al. [52]. Offline
datasets for five different MetaWorld tasks were constructed as follows: Collect 100 trajectories of
expert data on the target task using the built in ground truth policies with the addition of Gaussian
noise of standard deviation 1.0. Collect 100 trajectories of sub-optimal data by running the ground-
truth policy for a different randomization of the target task with Gaussian noise 1.0. Collect 100
trajectories of even more sub-optimal data by running the ground truth policy of a different task
with Gaussian noise standard deviation 1.0 in the target domain. Finally, collect 100 trajectories
with uniform random actions. As MetaWorld episodes are 500 steps long, this results in 200,000
time-steps of data. We then construct preference datasets by uniformly sampling segments from
the offline dataset and assigning labels 𝑦 according to

∑︁
𝑡 𝑟 (𝑠

(1)
𝑡 , 𝑎

(1)
𝑡) > ∑︁

𝑡 𝑟 (𝑠
(2)
𝑡 , 𝑎

(2)
𝑡) where 𝑟 is

the ground truth reward provided by metaworld. We then train using only the data from D General
architecture hyper-parameters were taken from Lee et al. [30], Hejna and Sadigh [21] which also use
the MetaWorld benchmark, but for online preference-based RL. Full-hyper parameters are shown
in Table 5. We run 20 evaluation episodes every 2500 steps. Full learning curves are shown in

15

0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Lift PH

0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Lift MH

0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Can PH

0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Can MH

Robomimic with Human Preferences

PT MR MR (reimpl.) IPL

Figure 4: Full learning curves on the RoboMimic benchmark with human preferences.

Fig. 5. When reporting values in Table 2, we choose the maximum point on the learning curves which
average across five seeds. This provides results as if early stopping was given by an oracle, which is
less optimistic than averaging the maximum of each seed as done in Mandlekar et al. [34].

Common Hyperparameters MR Hyperparameters
Parameter Value Parameter Value
𝑄,𝑉, 𝜋 Arch 3x 256d 𝑟𝜃 Arch 3x 256d
Learning Rate 0.0003 𝑟𝜃 LR 0.0003
Optimizer Adam 𝑟𝜃 Optimizer Adam
𝛽 4.0 𝑟𝜃 Steps 20k
𝜏 0.7
D𝑝 Batch Size 16
Training Steps 200k IPL Hyperparameters
𝑘 25 Parameter Value
Subsample 𝑠 16 𝜆 0.5

Table 5: Hyper-parameters used in the MetaWorld data scaling experiments.

D Ablations

In this section we provide additional ablations on both the benchmark datasets and MetaWorld
datasets. We keep the hyperparameters the same, except for the parameter-efficient experiments. We
run hyper-parameter sensitivty results for the human-preference benchmark datasets in Fig. 6. The
top row depicts the sensitivity for IPL to the value of 𝜆. The bottom row depicts the sensitivity of MR
to the number of timesteps the reward function is trained for.

16

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Button Press, 500

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Button Press, 1000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Button Press, 2000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Button Press, 4000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Drawer Open, 500

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Drawer Open, 1000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Drawer Open, 2000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Drawer Open, 4000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Sweep Into, 500

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Sweep Into, 1000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Sweep Into, 2000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Sweep Into, 4000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Plate Slide, 500

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Plate Slide, 1000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Plate Slide, 2000

50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

1.0
Plate Slide, 4000

50000 100000 150000 200000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

Su
cc

es
s

R
at

e

Assembly, 500

50000 100000 150000 200000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10
Assembly, 1000

50000 100000 150000 200000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10
Assembly, 2000

50000 100000 150000 200000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10
Assembly, 4000

MetaWorld with Scripted Preferences

MR (reimpl.) IPL

Figure 5: Full learning curves for the MetaWorld data scaling results with scripted preferences.

For the parameter-efficient experiments only we use an efficient version of IPL based on AWAC
[37] to additionally remove the value network. The outline of this variant is given below

Algorithm 3: IPL Algorithm (AWAC Variant)
Input :D𝑝 , D𝑜, 𝜆, 𝛼
for 𝑖 = 1, 2, 3, ... do

Sample batches 𝐵𝑝 ∼ D𝑝 , 𝐵𝑜 ∼ D𝑜

Estimate 𝑉 as 𝑄(𝑠, 𝜋(𝑠))
Update 𝑄: min𝑄 E𝐵𝑝

[L𝑝 (𝑄)] + 𝜆E𝐵𝑝∪𝐵𝑜
[L𝑟 (𝑄)]

Update 𝜋: max𝜋 ED𝑝∪D𝑜
[𝑒𝛽 (𝑄 (𝑠,𝑎)−𝑄 (𝑠, 𝜋 (𝑠))) log 𝜋(𝑎 |𝑠)]

For this version of IPL, we use 𝜆 = 0.5. All other hyper-parameters remain the same as in Table 6
except the architectures. For the parameter-efficiency experiments only we use MLPs consisting of
two dense layers with either dimension 64 or dimension 35. Running MR with a two-layer MLP of
dimension 35 has almost exactly the same number of parameters as IPL-AWAC with two-layer MLPs
of dimension 64. We include full results for the parameter-efficiency experiments in Table 6. We
find that on Drawer Open and Sweep Into, IPL outperforms both MR (64) and MR (35). In these
environments, performance increases from MR (35) to MR (64) indicating that the expressiveness
of the 𝑄-function and policy are limiting performance. For the same budget, IPL is able to perform

17

0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

Walker2D Medium Replay

0.1
0.5
2.5

0.0 0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.4

0.6

0.8

1.0

1.2

Sc
or

e

Walker2D Medium Expert

0.1
0.5
2.5

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Drawer Open, 500

0.4
2
10

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Drawer Open, 4000

0.4
2
10

Regularization Ablation with IPL

0.0 0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

Walker2D Medium Replay

1000
10000
100000

0.0 0.2 0.4 0.6 0.8 1.0

Training Steps 1e6

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Sc

or
e

Walker2D Medium Expert

1000
10000
100000

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Drawer Open, 500

1000
10000
100000

50000 100000 150000 200000

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Drawer Open, 4000

1000
10000
100000

Reward Training Steps Ablation on Benchmark Tasks with MR

Figure 6: Ablations on regularization strength 𝜆 for IPL (top row) and the number of reward steps for
MR (bottom row). We see that IPL is relatively consistent across different values of 𝜆. MR on the
other hand, can vary greatly if the reward function under or over fits. In Walker2D Medium Replay
and Drawer Open, 500, we see that it can easily under-fit. In Walker2D Medium Expert it easily
over-fits.

better. In Button Press, the simplest task, we find that MR (64) actually over-fits more than MR (35)
and MR (64) ends up performing worse. In Plate Slide, all methods perform similarly independent of
parameter count. We omit Assembly because of its low success rate at all data scales.

Preference Queries 500 1000 2000 4000

Button Press
MR (35) 73.9 ± 8.9 86.8 ± 8.2 89.9 ± 14.4 99.0 ± 1.0
MR (64) 54.2 ± 16.1 42.6 ± 33.0 67.1 ± 14.9 43.4 ± 7.4

IPL (64) 65.8 ± 13.3 79.8 ± 18.1 80.0 ± 17.3 95.8 ± 5.2

Drawer Open
MR (35) 13.4 ± 13.9 12.6 ± 21.9 15.5 ± 20.1 18.4 ± 25.6

MR (64) 13.4 ± 19.0 57.1 ± 31.2 54.5 ± 31.7 78.8 ± 12.2

IPL (64) 89.8 ± 11.3 93.2 ± 2.5 99.5 ± 0.9 95.5 ± 3.7

Sweep Into
MR (35) 35.1 ± 8.9 42.4 ± 9.9 45.9 ± 9.6 35.9 ± 4.1

MR (64) 31.1 ± 6.4 55.8 ± 5.9 49.6 ± 10.3 56.4 ± 10.3

IPL (64) 41.1 ± 14.2 63.9 ± 8.0 65.0 ± 12.0 63.9 ± 11.8

Plate Slide
MR (35) 55.2 ± 6.1 51.1 ± 4.4 53.0 ± 2.0 48.9 ± 3.3
MR (64) 46.6 ± 21.9 50.8 ± 0.6 47.0 ± 2.5 48.5 ± 4.6
IPL (64) 54.9 ± 3.2 49.4 ± 1.6 45.2 ± 9.0 48.8 ± 4.9

Table 6: Performance of different methods on the MetaWorld tasks under a limited parameter budget.
MR (35) and IPL (64) have the same number of parameters. The Assembly task is ommited due
to low success rate. On Button Press, fewer parameters appears to perform better as, due to the
simplicity of the task, its easier for the bigger models to overfit. On Drawer Open and Sweep Into,
we see consistent gains from increasing the number of parameters in the network, and IPL performs
best overall. On the Plate Slide task, all methods at different parameter scales perform similarly.

18

	Introduction
	Related Work
	Inverse Preference Learning
	Offline Preference-Based RL
	Removing The Reward Function

	Experiments
	Setup
	How does IPL perform on preference-based RL benchmarks?
	How does IPL scale with Data?
	How efficient is IPL?

	Conclusion
	Setup
	Benchmark Results
	Data Scaling Results
	Ablations

