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Abstract Autonomous vehicles have found wide-ranging adoption in aerospace, terrestrial
as well as marine use. These systems often operate in uncertain environments and in the
presence of noisy sensors, and use machine learning and statistical sensor fusion algorithms
to form an internal model of the world that is inherently probabilistic. Autonomous vehicles
need to operate using this uncertain world-model, and hence, their correctness cannot be
deterministically specified. Even once probabilistic correctness is specified, proving that an
autonomous vehicle will operate correctly is a challenging problem. In this paper, we address
these challenges by proposing a correct-by-synthesis approach to autonomous vehicle con-
trol. We propose a probabilistic extension of temporal logic, named Chance Constrained
Temporal Logic (C2TL), that can be used to specify correctness requirements in presence
of uncertainty. C2TL extends temporal logic by including chance constraints as predicates
in the formula which allows modeling of perception uncertainty while retaining its ease of
reasoning. We present a novel automated synthesis technique that compiles C2TL specifica-
tion into mixed integer constraints, and uses second-order (quadratic) cone programming to
synthesize optimal control of autonomous vehicles subject to the C2TL specification.We also
present a risk distribution approach that enables synthesis of plans with lower cost without
increasing the overall risk. We demonstrate the effectiveness of the proposed approach on a
diverse set of illustrative examples.
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1 Introduction

The rapid increase in computation power [24] and improved scalability of AI techniques [14]
have resulted in a wide-scale adoption of autonomous systems. Their adoption into safety-
critical applications such as autonomous driving, make it imperative that these systems
operate correctly. Currently, these systems are often designed manually, and their certifi-
cation relies on tests and extensive requirements on the design process. These are complex
systems with tightly-coupled components that implement control, perception and logical
decision-making, and proving the correctness of manual design of these systems is challeng-
ing [31,40]. The difficulty of this task is further amplified by the uncertain environment in
which these systems operate, and the inherent probabilistic nature of the statistical techniques
used to observe the environment. Further, the notion of correctness applied for electronic and
software systems are no longer sufficient due to the presence of inherent uncertainty in
environment and statistical machine learning algorithms used in perception. Ignoring such
uncertainty is unrealistic and abstracting it as non-determinism leads to impractically con-
servative design. We require a new approach to specify correctness requirements in presence
of uncertainty, along with techniques to ensure the satisfaction of these requirements by the
autonomous systems. In this paper, we address this challenge by defining a new specification
language, Chance Constrained Temporal Logic (C2TL), that extends signal temporal logic
to capture perception uncertainty. We present a novel approach to designing autonomous
control algorithms that are guaranteed to satisfy C2TL properties.

An autonomous control system can be conceptually divided into two key subsystems: a
perception pipeline to observe theworld, and a control pipeline comprising high-level reason-
ing and low-level motion planning. Both these subsystems are well-studied in the control and
robotics literatures, and there has been a lot of interest recently in quantifying uncertainty in
perception [13] aswell as control under uncertainty [4]. The traditional approach to the design
of autonomous systems decouples perception uncertainty and control by using probabilistic
thresholds in perception to ignore low probability events and model higher probability events
using non-determinism. The control is designed with respect to this conservative model. This
decoupling leads to overly conservative control in practice, and alsomakes it difficult to estab-
lish formal guarantees and prove safety of the overall composed system with perception and
control components. For example, given a safety property that requires a vehicle to avoid
obstacles and a probabilistic obstacle perception system, it is impossible to satisfy the safety
property deterministically. Chance constraints [35] provide a natural way to specify prob-
abilistic correctness properties, but so far, their application has been limited to specifying
invariant-like properties. On the other hand, temporal logics such as computational temporal
logic (CTL) [19] and linear temporal logic (LTL) [32] have emerged as effective speci-
fication languages for specifying and verifying dynamic behaviour of hardware-software
systems. Extensions of temporal logic for cyberphysical systems include signal temporal
logic (STL) [15], which allows expressing real-valued dense-time temporal properties. STL
has been used for verifying and synthesizing automated control subject to complex specifica-
tions, including history-dependent and timing requirements. STL does not model stochastic
nature of the environment and perception subsystems used to observe the environment. The
use of noise variables to model uncertainty in dynamics has been deployed for stochastic
control [16,17,44] but they rely on uniform modelling of different sources of uncertainty.
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Fig. 1 Safe control synthesis under perception uncertainty

Perception uncertainty affects only the estimate of current state and does not contribute to
uncertainty in temporal evolution. Perception uncertainty is not a design artefact but instead,
it arises out of physics constraints or quality of available sensors and perception algorithms,
and hence, they must be included in specifying the correctness requirement of the overall
system. There are also other sources of uncertainty such as those arising from noisy predic-
tion models which affect not just the perception of current state but the predicted temporal
evolution of the environment.

Our goal is to devise a specification and synthesis framework for constructing safe con-
trollers that are aware of the probabilistic correctness guarantees of perception subsystem,
and enable guarantees on the overall autonomous system and not just on the decoupled sub-
systems. Figure 1 illustrates the overall architecture of the C2TL-constrained autonomous
system that integrates noisy characteristics of the perception system into control synthesis.

We propose chance-constrained temporal logic (C2TL) as an extension of temporal logic,
where the leaf predicates in the logic can be chance constraints. C2TL is an effective specifica-
tion language for the autonomous control of systems operating under perception uncertainty.
We show that C2TL formulae can be compiled into mixed integer constraints; thus, C2TL
strikes the right balance between expressiveness and ease of reasoning. Second order cone
programming can be used to automatically synthesize optimal control satisfying the C2TL
specifications. We make the following contributions in this paper:

1. WedefineChanceConstrainedTemporal Logic (C2TL) and demonstrate its use to specify
the correctness of autonomous vehicle system control.

2. We formulate the problem of synthesizing autonomous vehicle control subject to C2TL
specifications while optimizing a quadratic cost function; we reduce this problem to a
second order cone program that can be solved using scalable tools such as CVXOPT [3].

3. We present a novel risk distribution approach that alleviates the conservativeness of
the synthesized control for C2TL specifications and enables discovering more optimal
solutions without sacrificing correctness.

This paper is a significantly extended and revised version of a conference paper [20]. In
particular, it includes a novel risk distribution approach that allows synthesis of control with
lower cost while still satisfying the C2TL specifications.

2 Background and Related Work

Projects such as the DARPA Urban Challenge [39] and the VisLab Intercontinental
Autonomous Challenge [9] have been instrumental in spurring the development and mat-
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uration of autonomous vehicle technology. In addition to ground vehicles, autopilots have
also found applications in manned and unmanned aircrafts [18] as well as under-water vehi-
cles [36]. One key areawhere autonomous systems still struggle is in dealingwith unexpected
situations and planning under uncertainty, arising from stochastic environments or noisy per-
ception. We briefly review the relevant literature in perception, safe and stochastic control,
and specification of probabilistic properties to summarize the current state of the art.

Most autonomous systems learn about their environment using sensors such as cameras
and LIDAR units to infer the environment state, which is maintained in the form of proba-
bilistic beliefs [12,25,26]. Uncertainty in these probabilistic beliefs arise from two sources.
First, the environment states are often dynamic and change over time. Second, the infor-
mation gathered from sensors is often not sufficient to exactly infer the environment state.
As an example, consider a popular perception technique like simultaneous localization and
mapping [5] (SLAM), which is used for determining the current position of an autonomous
vehicle. The estimated position of the vehicle and the coordinates of other entities in the map
are often assumed to have Gaussian noise. Aside from localization andmapping, another crit-
ical perception challenge for autonomous vehicles is obstacle detection and tracking [8,27].
Camera and laser range finders are used to locally detect and avoid obstacles during naviga-
tion for a previously constructed map. This is particularly useful in the presence of dynamic
objects whose locations are not fixed in the environment map. The uncertainty in the para-
metric models representing the obstacles is usually also modelled using Gaussian random
variables. The proposed C2TL specifications incorporate these Gaussian models of uncer-
tainty in perception by allowing the predicates in the formulae to be chance constraints [35]
over Gaussian random variables.

Safe control of autonomous systems using reachability analysis has been well-studied
in literature where the specification is restricted to reach-avoid properties requiring that a
particular target state be reached while avoiding unsafe states [29,30,42]. More recently,
safe control optimization techniques have been developed which allow exploration of con-
trol parameter space and online learning of optimal controller while remaining safe [2,7].
These techniques rely on learning probabilistic model of uncertainty either offline or online
at runtime and computation of reachable sets. Our approach is orthogonal to techniques for
estimating uncertainty and we focus on safe autonomous control given probabilistic guar-
antees on the accuracy of the perception subsystem. Further, we consider more expressive
properties of the system and environment than reach-avoid properties. Controller synthesis
from temporal properties expressed in linear temporal logic (LTL) and signal temporal logic
(STL) have also been proposed for robotic applications. In particular, automated synthesis
of receding horizon control from STL properties using mixed integer linear programming
has proved to be an efficient and scalable approach for controller synthesis with determin-
istic constraints [37,38]. We adopt a similar constraint-solving based approach to controller
synthesis from C2TL that extends STL with probabilistic chance-constraints.

The control of stochastic systems has also been extensively investigated [10,21,33,34].
The goal of these techniques is to determine a control policy that maximizes the probability
of remaining within a safe set during a finite time horizon [1]. This safe control problem
is usually reformulated as a stochastic optimal control problem with multiplicative costs
over a controlled Markov chain. Linear-Quadratic-Gaussian method and its extensions for
nonlinear stochastic systems subject to control constraints have also been proposed [43,45].
In contrast, our goal is to satisfy a probabilistic temporal logic specification while opti-
mizing over a given cost metric. This can be naturally modelled using chance constrained
programs [11,28]. Chance constrained programming was originally introduced for solving
probabilistic constraints which guarantees constraint satisfaction up to a specified proba-

123



Safe Autonomy Under Perception Uncertainty Using Chance… 47

bilistic limit while optimizing a cost function. It is used for uncertainty modeling in various
engineering fields [23,47]. For a detailed recent survey of the literature on chance constrained
programming approaches, the interested reader is directed to [35]. Here, we extend chance
constraints to temporal logic specifications. Another dimension along which we extend exist-
ing stochastic control techniques [46] is in our consideration of non-convex feasible spaces,
which is critical for autonomous vehicles operating in environments with obstacles. Recently,
there has been interest in modelling perception noise for stochastic control particularly in
context of autonomous vehicle control [46,47]. However, extension of these techniques to
non-convex feasible spaces is critical tomodel realistic environments of autonomous vehicles
which could have multiple obstacles. Our constraint-solving based formulation of synthesiz-
ing optimal control accomplishes this without any explicit convex hull approximation.

Chance constraints [23] can be used to specify probabilistic invariants of the system. Prob-
abilistic computation tree logic and probabilistic linear temporal logic [22] extend temporal
logic and allow the quantification of uncertainty in the satisfaction of temporal properties.
Our work combines chance-constraint based uncertainty specification with recent progress
in specifying requirements for cyber-physical systems. Signal temporal logic (STL) [15]
has been proposed for specifying behaviour of continuous and hybrid systems, because it
combines dense time modalities with numerical predicates over continuous state variables.
C2TL extends STL to specify probabilistic temporal properties, by allowing predicates to
be chance constraints over continuous state variables rather than just real-valued functions.
The uncertainty is restricted to probabilistic predicates, and temporal operators are not prob-
abilistic; this is in contrast to other probabilistic extensions of temporal logics [22]. We show
that C2TL can be used to specify correctness requirements for an autonomous vehicle under
perception uncertainty. We also present a reduction from C2TL constraints to mixed inte-
ger constraints. Thus, C2TL provides a balance between expressiveness of the specification
language and efficiency of automated synthesis.

3 Chance Constraint Temporal Logic

In this section, we first define Chance Constrained Temporal Logic (C2TL), and then illus-
trate how the correctness of autonomous vehicle control can be specified using C2TL. We
then describe how C2TL specifications can be compiled into overapproximate but deter-
ministic constraints. We then formulate the problem of synthesizing the correct control of
autonomous systems as a second order cone programming problem. The cost being optimized
is quadratic and optimization is done with respect to conic constraints over the state variables
and perception coefficients.

Notation: The correctness property is specified over the system state variables X =
{x1, x2, . . . , xn}, which represent the position of the vehicle, its velocity, acceleration, orien-
tation, angular velocities and other relevant parameters. The state of the system at time t is
denoted by xt .

In this work, half-planes form the basic unit of representation of knowledge acquired
through perception. This assumption is key to the reduction of the problem to a mixed
integer conic program, and is motivated by the observation that perception algorithms often
employ half-plane learning techniques such as Bayesian linear regression and classifiers. For
example, an obstacle can be perceived as an intersection of half-planes which represent the
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convex hull of the obstacle. Half-planes are represented as:

φlin : aixt + bi ≤ 0 or aixt + bi < 0

where the coefficients ai , bi are inferred by perception algorithms. Due to uncertainty in
perception, the coefficients are not deterministically known: rather, we only know the prob-
ability distribution over the coefficients. Let Dom(ai ), Dom(bi ) denote the domain of the
coefficients, and p(ai ), p(bi ) denote the respective probability density functions. So, the con-
straints from perception are not deterministic, but instead hold with an associated probability,
that is,

Pr(aixt + bi ≤ 0) ≥ 1 − δ or Pr(aixt + bi < 0) ≥ 1 − δ

We denote the control inputs of the autonomous system, which are the values to be syn-
thesized, by U ; the value at each time instant t is ut . A trace of system states and control
values is denoted by τ : IR≥0 → X ×U where τ(t) = (xt ,ut ).

Our definition of chance constrained temporal logic as a probabilistic extension of signal
temporal logic is motivated by two key observations:

– For specifications applied to autonomous systems, temporal aspects of correctness arise
from mission requirements such as reaching specific positions in sequence while staying
away from particular regions. These temporal aspects of mission requirements do not
usually have any associated uncertainty.

– Perception gathers information about a particular instant of time, and uncertainty in
perception is hence reflected only in the predicates computed on the system states at a
given time, and not on the temporal operators.

We therefore introduce chance constraints at the atomic predicate level of our logic. The
syntax definition of C2TL is as follows:

φdet := φlin | φlin ∧ φlin | ¬φlin

φcc := [Pr(φdet ) ≥ 1 − δ] | ¬φcc | ∼φcc | φcc ∧ φcc | φcc ∨ φcc | φccU[a,b]φcc,

where:

– linear predicate φlin over the variables v ⊆ X ∪ U is of the form: φlin(v) : aiv + bi ≤
0 or aiv + bi < 0. We can represent constraint aiv + bi > 0 as −aiv − bi ≤ 0, and
aiv + bi ≥ 0 as −aiv − bi < 0.

– deterministic predicate φdet is a Boolean combination of linear predicates if ai , bi are
fixed constants.

– chance-constraint [11] is a probabilistic extension of deterministic predicates and is of
the form Pr(φdet ) ≥ 1 − δ. where 0 ≤ δ ≤ 1 represents uncertainty about whether
the inequality holds, and the coefficients are random variables with Gaussian probability
distribution associated to them.

The coefficients c = (a, b) in chance-constraints φcc are random variables. We denote
their probability distribution by p(c). If φcc is a chance-constraint of the form Pr(φdet ) ≥
1 − δ, we can compute Pr(φdet ) = ∫

c∈R(φdet ,v)
p(c)dc where R(φdet , v) denotes the set

of coefficients that satisfy the corresponding deterministic predicate φdet with variables v.
Directly computing this integral is difficult andwe provide an efficient approximationmethod
for likely chance-constraints.

C2TL admits the standard globally (G), eventually (F) and until (U ) operators of temporal
logic; here we restrict discussion to the until (U ) operator, which can be used to represent
all of the others. The subscripts of the operators denote the time interval associated with the
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property, as in STL. The satisfaction of a C2TL formula over a trace τ at time t is defined
recursively as follows:

τ(t) |� φlin ⇔ φlin(τ (t))

τ (t) |� φ1
lin ∧ φ2

lin ⇔ φ1
lin(τ (t)) ∧ φ2

lin(τ (t))

τ (t) |� ¬φlin ⇔ ¬φlin(τ (t))

τ (t) |� [Pr(φdet ) ≥ 1 − δ] ⇔ pc(φdet , τ (t)) ≥ 1 − δ

τ(t) |� ¬[Pr(φdet ) ≥ 1 − δ] ⇔ pc(φdet , τ (t)) < 1 − δ

τ(t) |� ∼[Pr(φdet ) ≥ 1 − δ] ⇔ τ(t) |� [Pr(¬φdet ) ≥ 1 − δ]
τ(t) |� φ1

cc ∧ φ2
cc ⇔ τ(t) |� φ1

cc ∧ τ(t) |� φ2
cc

τ(t) |� φ1
cc ∨ φ2

cc ⇔ τ(t) |� φ1
cc ∨ τ(t) |� φ2

cc

τ(t) |� φ1
ccU[a,b]φ2

cc ⇔ ∃t1 t + a ≤ t1 ≤ t + b ∧ τ(t1) |� φ2
cc

∧ (∀t2 t ≤ t2 ≤ t1 ⇒ τ(t2) |� φ1
cc)

As a special case, when δ = 0, chance constraints become deterministic. Chance con-
straints have two kinds of negations:

– logical negation denoted by ¬, and
– probabilistic negation denoted by ∼

For example, consider a deterministic formula [−x < 0] and its logical negation [x ≤ 0],
and corresponding chance constraints φcc ≡ Pr([−x < 0]) ≥ 1 − δ and the probabilistic
negation ∼φcc ≡ Pr([x ≤ 0]) ≥ 1− δ. If δ = 0.8, then φcc ≡ Pr([−x < 0]) ≥ 0.2, that is,
Pr([x ≤ 0]) < 0.8. This is consistent with ∼φcc ≡ Pr([x ≤ 0]) ≥ 0.2. Thus, it is possible
for both φcc and its probabilistic negation ∼φcc to be simultaneously true.

The following theorem relates probabilistic negation and logical negation when δ <

0.5. This case is relevant because it corresponds to “likely” chance constraints, where the
probability of violation is less than 0.5. In practice, most useful constraints obtained from
perception have significantly high confidence and δ is very small.

Theorem 1 If δ < 0.5, probabilistic negation implies logical negation, that is, ∼φcc ⇒
¬φcc. If δ > 0.5, logical negation implies probabilistic negation.

Proof From the definition of C2TL formula, ¬φcc ≡ ¬[Pr(φdet ) ≥ 1 − δ] and ∼φcc ≡
Pr(¬φdet ) ≥ 1 − δ.

Now, δ < 0.5 ≡ δ < 1 − δ. So, Pr(¬φdet ) < δ ⇒ Pr(¬φdet ) < 1 − δ, that is,
¬[Pr(¬φdet ) < δ] ⇐ ¬[Pr(¬φdet ) < 1 − δ] by contrapositivity.
¬[Pr(¬φdet ) < 1 − δ] ≡ Pr(¬φdet ) ≥ 1 − δ and so,
¬[Pr(¬φdet ) < δ] ⇐ Pr(¬φdet ) ≥ 1 − δ.
Further, Pr(¬φdet ) < δ ≡ Pr(φdet ) ≥ 1 − δ and so,
¬[Pr(φdet ) ≥ 1 − δ] ⇐ Pr(¬φdet ) ≥ 1 − δ, that is, ¬φcc ⇐ ∼φcc.
Hence, ∼φcc ⇒ ¬φcc when δ < 0.5.
The proof for the other case proceeds similarly with the direction of implication reversed. ��
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4 Automated Synthesis of Autonomous Vehicle Control

We now describe how the correctness properties of an autonomous system can be specified
usingChanceConstrained Temporal Logic (C2TL). Any set of obstacles can be approximated
by an union of a finite number of convex polytopes. The planes forming the convex polytopes
are only probabilistically known, due to perception uncertainty. A convex polytope is a
conjunction of half-planes (linear constraints), and can be represented as

∧

i

(aixt + bi > 0)

where the coefficients ai ∼ N (aμ
i , a�

i ) are assumed to be Gaussian variables whose mean
aμ
i and variance a�

i are estimated by the perception pipeline. N denotes the Gaussian dis-
tribution. Since the coefficients are Gaussian, collision with obstacles cannot be ruled out
deterministically. Let δobs be the user-specified threshold for the maximum allowable prob-
ability of collision with obstacles. This collision avoidance property is specified in C2TL
as:

Pr

(
∨

i

aixt + bi ≤ 0

)

≥ 1 − δobs

The property of avoiding multiple obstacles j is specified as:

Pr

⎛

⎝
∧

j

∨

i

ai jxt + bi j ≤ 0

⎞

⎠ ≥ 1 − δobs

We assume that the map consists of static and dynamic obstacles as well as real or virtual
walls that restrict the vehicle to be within a bounded region, but outside of obstacle areas.
Let ai j be the coefficients of the obstacles and wi j be the coefficients of the perceived walls.
The unobstructed map with uncertainty can thus be represented using the formula:

φmap :=
⎡

⎣Pr

⎛

⎝
∧

j

∨

i

ai jxt + bi j ≤ 0

⎞

⎠ ≥ 1 − δobs

⎤

⎦

∧
⎡

⎣Pr

⎛

⎝
∧

j

∨

i

wi jxt + bi j ≤ 0

⎞

⎠ ≥ 1 − δwall

⎤

⎦

where ai j ∼ N (aμ
i j , a

�
i j ) represents the uncertain perception of obstacles, and wi j ∼

N (wμ
i j ,w

�
i j ) represents the uncertain perception of walls (which in practice includes uncer-

tainty in self-localization). Similar constraints can be added for other parameters of an
autonomous system such as constraints on speed or acceleration based on the system’s current
location in the map.

Apart from the safe navigation requirement represented by the global property G(φmap),
a second set of useful specifications on autonomous vehicles corresponds to the mission
requirements. For example, the vehicle must reach its final destination within some time-
bound tmax . Because of uncertainty in perception, we can not guarantee this property
deterministically.Given auser-specifiedprobability threshold δmission of failing to achieve the
mission goals, the goal of reaching the destination is specified as F[0,tmax ](Pr(x = xdest ) ≥
1− δmission). Other examples include the requirement that an autonomous car wait at a stop
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sign until all cross-traffic arriving at the intersection before it passes, and that an aircraft flies
straight without turning until it reaches the safe velocity range for turning. These properties
can be specified using until properties, φ1U[0,t]φ2. We denote the set of mission constraints
by φmission .

The overall specification for the safe control of the autonomous system is thus φmap ∧
φmission : that is, the systemachieves the temporal specification ofmission goalswhile remain-
ing safewith respect to themap.Wenote that the focus of this paper is on autonomousvehicles,
but C2TL can also be used to specify behavior of other autonomous systems such as robotic
manipulators, and the techniques presented in this paper extend beyond this application
domain.

Next, we present a translation of C2TL constraints over Gaussian random variables to
deterministic constraints. The constraints are linear with respect to system (state) variables
and conic overall due to uncertain coefficients. Note that without half-planes as our basic unit,
these constraints may well be non-linear, but the rest of our results would still hold, and the
problem could be solved using a solver capable of handling such non-linear constraints. The
first part of the translation deals with temporal logic formulae and Boolean combinations of
atomic constraints. The second part of translation focuses on elementary chance constraints,
and reduces those to deterministic constraints.

We focus on chance constraints with violation probability threshold less than 0.5. As
discussed in Sect. 3, probabilistic negation is not the same as logical negation when violation
probability (δ) can be 0.5 or more, and hence, we will need two {0, 1} integer variables to
represent the truth value of each chance constraint, to account for the four cases depending
on the truth value of the chance constraint and its probabilistic negation. In [41], such an
approach is taken and two {0, 1} integer variables pφ and qφ are introduced for each formula
φ. For likely (violation probability δ < 0.5) chance constraints, one {0, 1} integer variable
can be used for over-approximation by Theorem 1. Similar to the STL encoding provided in
[37,38], we introduce Boolean, that is, {0, 1} integer variables mφ

t for each constraint φ and
time t . These Boolean variables are related in the same way as for the STL encoding.

– Negation: m¬φ
t = 1 − mφ

t

– Conjunction: mφ1∧φ2

t = min(mφ1

t ,mφ2

t )

– Disjunction: mφ1∨φ2

t = max(mφ1

t ,mφ2

t )

– Until: m
φ1U[a,b]φ2

t = maxt ′∈[t+a,t+b](min(mφ2

t ′ ,mint ′′∈[t,t ′](mφ1

t ′′ )))

The next challenge is in translating the probabilistic chance constraints over Gaussian vari-
ables to deterministic mixed integer constraints. We need to consider chance constraints only
of the form:

φelem
cc ≡ Pr

⎛

⎝
∧

j

N j∨

i

ai jxt + bi j ≤ 0

⎞

⎠ ≥ 1 − δtm

We need to conservatively over-approximate φelem
cc using mixed integer constraints which

are satisfiable only if φelem
cc is satisfiable. φelem

cc can be rewritten as

Pr

⎛

⎝
∧

i, j

ai jxt + bi j − Mzi j ≤ 0

⎞

⎠ ≥ 1 − δtm ∧
∧

j

(
∑

i

zi j < N j ∧ zi j ∈ {0, 1}
)

,

where N j is the number of constraints in the j-th disjunction, zi, j are {0, 1} variables and M
is a sufficiently large positive number. This transformation uses the big-M reduction common
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in non-convex optimization [6] 1. The above equivalence holds because at least one zi j is 0
for each j since

∑
i zi j < N j and zi j ∈ {0, 1}, and thus, at least one of the constraints in

∨N j
i ai jxt + bi j ≤ 0 must be true for each j .
Next, we use Boole’s inequality to decompose the conjunction in the probabilistic chance

constraint as follows.

Pr

⎛

⎝
∧

i, j

ai jxt + bi j − Mzi j ≤ 0

⎞

⎠ ≥ 1 − δtm ⇔ Pr

⎛

⎝
∨

i, j

ai jxt + bi j − Mzi j > 0

⎞

⎠ < δtm .

Further, Pr

⎛

⎝
∨

i, j

ai jxt + bi j − Mzi j > 0

⎞

⎠ <
∑

i, j

Pr(ai jxt + bi j − Mzi j > 0)

since the probability of union of events is less than the sum of the individual probabilities of
the occurrence of each event.

Next, we introduce new variables 0 ≤ εi j ≤ 1 with
∑

i, j εi j < δtm , and conservatively
approximate the chance constraint as:

Pr

⎛

⎝
∧

j

N j∨

i

ai jxt + bi j ≤ 0

⎞

⎠ ≥ 1 − δtm ⇐
∧

i, j

Pr(ai jxt + bi j − Mzi j ≤ 0) ≥ 1 − εi j

∧
∧

i j

0 ≤ εi j ≤ 1 ∧
∑

i j

εi j < δtm ∧
∧

j

(
∑

i

zi j < N j

)

∧
∧

i, j

zi j ∈ {0, 1}

With N = ∑
j N j , we choose εi j = δtm/N , which corresponds to uniform risk allocation

among the probabilistic constraints above. Since ai j is a Gaussian random variable, the linear
combination of Gaussian variables ai jxt + bi j − Mz j is also Gaussian. Further, the uniform
risk allocation ensures that the violation probability bounds are constant.

So, Pr(ai jxt + bi j − Mz j ≤ 0) ≥ 1− εi j can be translated to a deterministic constraint

z j = 0 ⇒ μi jxt + bi j − ErfInv(εi j )||�1/2
i j xt ||2 ≤ 0

where μi j and �i j are mean and variances of the coefficients ai j . ErfInv is the Gaussian
inverse error function. Since εi j is constant, we can directly obtain ErfInv(εi j ) by looking
up the table for the Gaussian inverse error function. A similar approach is used in [46] for the
synthesis of control inputs with respect to chance constraints. Consequently, the probabilis-
tic chance constraints are reduced to a set of deterministic constraints. This completes the
translation of C2TL constraints to a set of deterministic constraints over the system variables.

The following theorem summarizes the conservative nature of the above translation. Given
the control specification for an autonomous vehicle ψC2T L , the above translation generates
ψMI which conservatively approximates ψC2T L .

Theorem 2 Given C2TL constraints ψC2T L , the translation presented above will generate
a set of mixed integer constraints ψMI such that ψMI ⇒ ψC2T L .

1 Given a disjunctive constraint of the form a1x + b1 ≤ 0∨ a2x + b2 ≤ 0, the big-M reduction translates it
to a1x + b1 − Mz1 ≤ 0 ∧ a2x + b2 − Mz2 ≤ 0 ∧ z1 + z2 < 2 where z1, z2 ∈ {0, 1} and M is chosen to be
larger than any possible value of a1x + b1 and a2x + b2.

123



Safe Autonomy Under Perception Uncertainty Using Chance… 53

The conservativeness of ψMI arises from the following approximations:

– We use the sum of the probabilities of chance constraints to upper-bound the probability
of their disjunction. If the constraints are completely independent of each other, the
sum of their individual probabilities is exactly the probability of their disjunction. The
approximation is small if the constraints are mostly independent, which is often the case
for specifying autonomous vehicle systems, since obstacles usually do not overlap.

– We use a uniform risk allocation of the violation probability bounds for each individual
constraint. In Sect. 5, we present a risk distribution technique to alleviate the conserva-
tiveness introduced by uniform risk allocation.

Thus, the translation of C2TL constraints to mixed integer constraints is conservative, but
the approximation introduced is expected to be reasonably tight.

The goal of synthesizing optimal control for autonomous vehicles is to automatically
generate the control inputs u. The control inputs applied at time k are denoted by uk . Often,
the dynamical system can be approximated by linearizing the system around the current point
of operation and using model predictive or receding horizon control. A detailed discussion
on model predictive control for signal temporal logic can be found in [37]. We employ a
similar approach here.

A finite parametrization of a linear system assuming piecewise constant control inputs
yields the following difference equation:

xk+1 = Akxk + Bkuk,

where xk ∈ Rnx is the system state in nx dimensions, uk ∈ Rnu denotes the nu control
inputs, and Ak, Bk are coefficients representing linear system dynamics around the state xk .
We consider the control problem over a bounded time horizon T , that is, 0 ≤ k ≤ T .

Further, the control inputs uk at all time steps k are required to be in a convex feasible
region Fu , that is,

Fu ≡
Ng∧

i=1

(
gTi u ≤ ci

)
;

∧

k

uk ∈ Fu

where the convex region Fu is represented as intersection of Ng half-planes.
The state variables are required to satisfy the autonomous vehicle correctness specification

ψC2T L
ap , that is, xk |� ψC2T L

ap for all k. We can conservatively approximate the autonomous

vehicle correctness specification by ψMI
ap as discussed earlier, that is, xk |� ψMI

ap ⇒ xk |�
ψC2T L
ap
In addition to correctness specification, the synthesized vehicle control is also expected

to minimize a user-specified cost function J (x,u). We restrict the cost function J to be
quadratic in order to ensure that solving the control synthesis problem is computationally
efficient. Quadratic functions can capture cost metrics of the form

∑
i u

†
kU

†Uuk + x†k S
†Sxk

with appropriate scaling vectors U and S, where † denotes the transpose of a matrix. These
can represent metrics such as fuel consumption as well as metrics on the vehicle path.

Problem 1 (Autonomous Vehicle Control)

argmin
u

J (x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu, xk |� ψC2T L
ap
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Problem 2 (Conservative Autonomous Control)

argmin
u

J (x,u)

s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu, xk |� ψMI
ap

Recall that every solution to Problem 2 also solves Problem 1. Moreover, for a bounded time
horizon T and a quadratic cost function, since all the constraints are linear in system variables
and conic due to the presence of uncertain coefficients, the conservative autonomous control
problem can be solved using scalable second order (quadratic) cone programming tools such
as CVXOPT [3]. The following theorem summarizes the correctness guarantee:

Theorem 3 The solution to Problem 2 is sound with respect to Problem 1: if control inputs
are synthesized for the conservative problem, they are guaranteed to satisfy the specified
correctness property ψC2T L

ap .

This theorem follows from Theorem 2 because xk |� ψC2T L
ap ⇐ xk |� ψMI

ap . Note, however,
that the proposed synthesis method (i.e. solving the more efficiently solvable conservative
problem using second order cone programming) is incomplete for the autonomous control
problem due to the conservative approximation of C2TL constraints (ψC2T L

ap ⇐ ψMI
ap ). The

incompleteness relates to degree of conservative approximation introduced in the translation
of C2TL constraints to mixed integer constraints.

5 Risk Distribution for Optimal Control

In Sect. 4, we presented our approach to derive autonomous control from high-level
chance-constraint temporal logic (C2TL) specifications using a conservative determinis-
tic approximation. One of the sources of approximation is a uniform risk allocation. We
show how optimization based risk distribution can be used to make the synthesis approach
less conservative for convex C2TL properties. In case of non-convex properties, we fix the
value of the z variables used in the convex encoding to their assignment in the computation
of optimal solution assuming a fixed allocation presented in Sect. 4. The risk distribution
approach presented here allocates risk non-uniformly by adjusting the solution for uniform
risk. The key intuition is that autonomous control has naturally different levels of risks along
a trajectory; a vehicle has higher risk when it is close to an obstacle. Thus, a synthesis
approach which uses non-uniform risk distribution would discover more optimal control
compared to uniform risk allocation. Recall the definition of problem 1 where the chance-
constraint temporal logic has been compiled into conjunction of individual chance-constraints
using the algorithm presented in Sect. 4. We modify the definition by including the risks
ε = (ε11, ε12, . . . , ε21, ε22, . . .) allocated to each constraint as a parameter of the cost.

argmin
u

J (x,u, ε) s.t. xk+1 = Akxk + Bkuk, k = 1 . . . T,uk ∈ Fu,
∧

i

μikxk + bik − ErfInv(εik)||�1/2
ik xk ||2 ≤ 0 for each k

The uniform risk allocation corresponds to setting εik = δtm/N for all i, k. We show that the
cost function J is monotonous in the εik parameters.

Theorem 4 ∂ J∗
∂εik

≤ 0 for all i, k. The optimal cost J ∗, computed by solving the above
optimization function, monotonically decreases with increase in εik .
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Proof Let ε1 and ε2 be two risk assignments. We say that ε1 ≤ ε2 if and only if ε1ik ≤ ε2ik
for all i, k. We denote the feasible region for (x,u) corresponding to ε1 and ε2 as R(ε1) and
R(ε2). Now, the derivative of the inverse error function for Gaussian distribution is given
by d(ErfInv)/d(ε) = 1/2

√
π exp [ErfInv(x)2] > 0. Clearly, ErfInv monotonically

increases with ε. Thus,

ε1ik ≤ ε2ik ⇒
(
μikxk + bik − ErfInv(ε1ik)||�1/2

ik xk ||2 ≤ 0 ⇒
μikxk + bik − ErfInv(ε2ik)||�1/2

ik xk ||2 ≤ 0
)

So, ε1 ≤ ε2 ⇒ R(ε1) ⊆ R(ε2). The optimal cost J ∗(x,u, ε2) is found by searching over
R(ε2) while the optimal cost J ∗(x,u, ε1) is found by searching over a superset R(ε1) and
so, J ∗(x,u, ε2) ≤ J ∗(x,u, ε1) if ε1 ≤ ε2. Thus, J ∗(x,u, ε) is a decreasing function in ε. ��

Our approach for risk distribution relies on incremental revision of risk allocation using
the monotonicity result in Theorem 4. Let ε1 be the uniform initial risk assignment, that
is, ε1ik = δtm/N for all i, k, with the corresponding optimal cost J (ε1). We need to find
a revision sequence of risk assignments ε1, ε2, ε3, . . . with corresponding optimal costs
J (ε1) ≤ J (ε2) ≤ J (ε3) . . . ≤ J (εn). We can terminate this sequence after a fixed number
of iterations or when a numerical convergence criteria is met, that is, J (εn) − J (εn−1) ≤ Δ

for some fixed threshold Δ.
We show how ε p+1 can be constructed from ε p to generate the above sequence. For all

the i, k constraints that are not active with ε p , that is,

μikxk + bik < ErfInv(ε
p
ik)||�1/2

ik xk ||2

we find ε
p′
ik < ε

p
ik such that the following is satisfied:

μikxk + bik ≤ ErfInv(ε
p′
ik )||�1/2

ik xk ||2 ≤ ErfInv(ε
p
ik)||�1/2

ik xk ||2
The inactive constraints are still inactive but they have become tighter. For the active con-

straints, the risk associated to them are kept the same, that is, ε p′
ik = ε

p
ik . So, the feasibility

region has become strictly smaller for risk distribution ε p′
and the same set of constraints are

active as those for ε p . So, the optimum cost will remain the same, that is, J (ε p) = J (ε p′
).

After the risks have been tightened, the total cumulative risk remaining to relax the active

constraints is given by ρ = ∑
ik ε

p
ik −∑

ik ε
p′
ik . If the number of active constraints is M , then

we can relax the risk in each of the active constraints by ρ/M to obtain ε p+1 = ε p′ + ρ/M .
For all the inactive constraints, ε p+1 = ε p′

. So, ε p+1 < ε p′
. Due to the monotonicity

theorem, J (ε p+1) ≤ J (ε p′
). Thus, J (ε p+1) ≤ J (ε p).

The formal algorithm for risk distribution is presented below. We initialize with uniform
risk. The numerical convergence criteria is used to terminate the risk distribution algorithm.
The algorithm terminates if the improvement in the computed cost is less than 1% of the
current cost. The algorithm also terminates if all the constraints are tight which implies that
a locally optimal risk assignment has been found. It is possible that none of the constraints
associated with probabilistic risk is tight because the solution is constrained by other deter-
ministic constraints. The algorithm terminates in this case because risk redistribution would
not improve the cost.
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Algorithm:Non-uniformRisk Distribution: algorithm starts with an initialization to uniform
risk assignment, total number of constraints is N

ε1ik ← δtm/N for all i, k, p ← 1, NotConverged ← true
Solve the optimization problem with ε p to obtain the cost J (ε p)
while NotConverged do
Nactive ← number of active constraints in the optimization problem, ρ ← 0
for each inactive constraint (i, k) do

ε
p+1
i,k ← 0.5 ε

p
i,k + 0.5 Erf((μikxk + bik )/||�1/2

ik xk ||2)
// Satisfies μikxk + bik ≤ ErfInv(ε

p+1
ik )||�1/2

ik xk ||2 ≤ ErfInv(ε
p
ik )||�1/2

ik xk ||2
ρ ← ρ + ε p+1 − ε p

δ ← ρ/Nactive
for each active constraint (i, k) do

ε
p+1
i,k ← ε

p
i,k + δ

Solve the optimization problem with ε p+1 to obtain the cost J (ε p+1)
NotConverged ← J∗(ε p+1) ≤ 1.01 × J∗(ε p) and Nactive �= 0 and Nactive �= N
p ← p + 1

return ε p

6 Case Studies

We now experimentally demonstrate the effectiveness of our approach. All experiments were
done on a Intel Core-i7 2.9 GHz x 8 machine with 16 GB memory.

Navigation in an uncertain map:

The first case-study considers the problem of navigation in an uncertain map from [48]. A
point mass with two modes – moving forward and turning – is expected to navigate safely
in the map shown in Fig. 2. The walls in the map and the obstacle in the center are modelled
using probabilistic constraints that incorporate the uncertainty in perception. The uncertain
walls are illustrated in the map by sampling values of the coefficients and drawing the
corresponding walls. The probabilistic safety requirement in this case is a global property
requiring that the vehicle avoid the walls and obstacles with a very high probability. The
objective function being optimized is quadratic in the final state as well as the control inputs:
f (x,u) = 50(xN − xdest )T (xN − xdest ) + 0.001

∑
i u

T
i ui , where xdest is the destination

state (2, 1). The C2TL safety constraint is Pr [G(x(1) ≤ 0.8 → x(0) ≤ 1.7 ∧ x(0) ≥
1.7 → x(1) ≥ 0.8 ∧ ((x(1) ≤ a ∧ x(1) ≥ b) ∨ (x(1) ≤ c ∧ x(1) ≥ d)) ∧ ((x(0) ≤
e ∧ x(0) ≥ f ) ∨ (x(0) ≤ g ∧ x(0) ≥ h))] ≥ 1 − δ. The coefficients a, b, c, d, e, f, g, h
are Gaussian random variables with mean: 2.6, 2, 0.1,−0.1, 0.1,−0.3, 2.2, 1.4 respectively,
and they have the same variance of 0.06. The violation probability δ is chosen to be 0.01 and
0.001.

Monte Carlo simulation was used to estimate the probability of constraint violation. For
each simulation, the location of the walls and the obstacles was determinized by sampling
from the corresponding Gaussian distribution. We then checked whether the automatically
generated path intersected with the walls or obstacles, violating the safety requirement.When
the violation probability in the C2TL specification was set to 0.001, Monte Carlo trials did
not find a single instance out of 10000 simulations in which the property was violated. We
increased the violation probability to 0.01, and found 8 out of 10000 simulations that violated
the probability; i.e., the estimated violation probability was 0.0008. When compared to the
approach in [48] and approximating chance-constraints by sampling, the method proposed
in this paper takes 4.1 s instead of 25.2 s to compute a sequence of control inputs.
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Fig. 2 Uncertain map navigation: x(0), x(1) are x and y-axis

This demonstrates how the proposed approach conservatively approximates the speci-
fied probabilistic constraint, generating a motion plan that satisfies the probabilistic safety
property. Observe that although the cost minimizes the path length, the generated path goes
around the obstacle, taking the longer path. The shorter path would violate the C2TL safety
constraints due to the uncertainty in the location of the obstacles and walls. This is shown in
Fig. 2. We illustrate the uncertain walls with multiple lines.

Lane Change:

The second case-study is on the synthesis of control for an autonomous vehicle such as a
car, trying to pass a tractor-trailer in an adjacent lane, as described in [49]. The trailer can
probabilistically switch into the passing car’s lane. If the car is ahead of the trailer when the
trailer initiates a lane change, then the car should accelerate, and if the car is behind the trailer
when the trailer initiates the lane change, the car should decelerate. If the trailer switches
lanes when it is just adjacent to the car, the car has no action to prevent an accident. Thus, a
completely safe course of action is not possible for the autonomous car and it can only try to
keep the risk below a user-specified threshold by passing the trailer quickly and not staying
in the unsafe region for long. The uncertainty arises due to a probabilistic model of when the
trailer will switch lanes, based on the car’s observations of its behaviour. The states of the car

xk is a vector comprising of its relative longitudinal position and velocity, that is, xk =
[
pk
vk

]

.

The system dynamics is given by xk+1 = Axk + Buk where A =
[
1 Δt
0 1

]

, B =
[
0.5Δt2

Δt

]

.

The car does notmove laterally but the trailermoves laterally and its perceived lateral position
at time t is given the Gaussian random variable yt . yt = 0 is the trailer’s original lane and
yt = 1 denotes the lane of the car. The system starts with p = −5, that is, the car is
behind the trailer. But due to the probabilistic perception of the trailer’s lateral movement,
the requirements are given by following C2TL constraints that ensure safety along with
Pr [G[0,1045]((−2 ≤ p ≤ 2) ⇒ y ≥ 1) ∧ F[0,1045](p > 2)] ≥ 1 − δ. We consider a time
horizon of length 1045 and the cost function is the quadratic sum of control inputs.We require
the separation between the car and trailer to be above a safe limit with a high probability. The
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Fig. 3 a Runtime comparison, b accuracy comparison

threshold of violating the specification was set to δ = 0.015. The cost function was the time
spent behind the trailer but not in the same lane. Monte Carlo simulations of the generated
controller showed that the actual threshold of violation is 0.0004.

In order to compare with LQG-based sampling techniques, we change the cost function to
incorporate temporal logic requirements by penalizing the car for coming close to trailer. Fur-
ther, we replace the noisy observation yt by the corresponding linear Gaussian dynamics. In
Fig. 3a, we compare runtime of the synthesis technique for each specified violation probabil-
ity. While our proposed technique’s runtime is not very sensitive to the violation probability,
the runtime of the sampling-based approach increases sharply due to the increase in the num-
ber of required simulation runs. In Fig. 3b, we present the violation probability observed in
Monte Carlo simulations when both approaches are given the same runtime, by restricting
the number of simulation runs. All bars above the diagonal line satisfy the probabilistic con-
straint, while bars below it do not (note the negative log scale on y-axis as well as x-axis).
No violations were found for our proposed technique for error bounds 10−6 and lower. Thus,
the proposed method always satisfies the specification, whereas sampling fails to do so for
smaller error bounds.

Passing a Vehicle Using Oncoming Traffic Lane:

The third case-study is from recent work by Xu et al. [50]. In this case-study, a vehicle’s lane
is blocked and it needs to move into the lane of oncoming traffic to go around the obstacle.
The perception pipeline on the vehicle estimates the position and the speed of oncoming
traffic before deciding to get into the oncoming traffic lane.

The state of the vehicle x = [x y θ ], and the control input u = [νκ] where x and y are the
position, θ is the angle, κ is curvature ν is the speed. The dynamics of the vehicle is given

by time-varying linear model: xt = Atxt−1 + Btut−1 where At =
⎡

⎣
1 0 −vt−1 sin θt−1Δt
0 1 vt−1 cos θt−1Δt
0 0 1

⎤

⎦

and Bt =
⎡

⎣
cos θt−1Δt 0
sin θt−1Δt 0

0 vt−1Δt

⎤

⎦. The static obstacle is fixed in first lane (y = 0) between

x = 5 and x = 6, and the noisy perceived position and speed of oncoming traffic at time t
is given by the xmt , ymt , vmt . Due to uncertainty in perception, we can not deterministically
guarantee safe maneuvering of the vehicle, but we require that the probability of collision
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Fig. 4 a Illustration of synthesized control. b Runtime versus − log(ε). Left Positions of the autonomous
vehicle (circle) and oncoming traffic (rectangle) at different (1–6) time steps are shown. The red rectangle is
the obstacle. Right Runtime comparison for different violation probability bounds

Fig. 5 Impact of risk distribution on trajectory

with oncoming traffic or with the obstacle in the vehicle’s lane is below a threshold of ε. The
C2TL constraint is Pr [G[0,1000](ymt − y < 0.8 ⇒ (x − xm > 1 ∨ x − xm < −1) ∧ (5 ≤
x ≤ 6 ⇒ y ≥ 1)) ∧ F[0,1000](x ≥ 8)] ≥ 1 − ε. The cost function measures the time taken
to re-enter the lane after crossing the obstacle.

We illustrate the qualitative nature of the synthesized control in Fig. 4a. For violation
probability ε = 0.0001, the control synthesized by the sampling-based technique in time
comparable to our approach (4 s) is not probabilistically safe. The control synthesized using
the proposed technique relies on speeding up and getting around the obstacle before the
oncoming traffic. When we increase the standard deviation in the perception of the speed of
the oncoming traffic by 10X, the control synthesized by our approach picks a less optimum,
higher-cost solution in order to meet the safety violation probability requirement, which
slows the vehicle and waits for the oncoming traffic to pass before going around the obstacle.
Figure 4b shows that the runtime of the sampling-based approach increases rapidly with a
decrease in ε, while it does not change significantly for our technique.
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Risk Distribution:

In the last case study, we demonstrate how risk distribution allows synthesis of more optimal
control than uniform risk allocation in the navigation map shown in Fig. 5. The cost metric
is the length of the path and non-uniform risk allocation improves the cost by 6%. The total
risk ε = 0.01. The total number of iterations of the risk distribution algorithm was 4 and the
total runtime was 119s. The dotted blue line is trajectory with uniform risk and solid black
line is trajectory with non-uniform risk allowing it to come closer to obstacle.

7 Conclusion

In this paper, chance constrained temporal logic (C2TL) is proposed to capture correctness
specifications in the presence of uncertainty. Our technique relies on approximating the prob-
abilistic C2TL specification constraints with conservative deterministic constraints, and then,
solving the control problem using second order cone programming. The autonomous vehicle
control synthesized by our technique is guaranteed to satisfy the probabilistic specifications.
Our approach does not address noisy dynamics and assumes that the dynamical system is
deterministic. Further, it is restricted to linear dynamics. It also requires pre-characterization
of noise in perception and assumes that the noise characteristics at runtime remain within
these bounds. In practice, uncertainty in perception changes with environment and a more
effective approach would adapt to the changes in uncertainty. The proposed approach is a
first-step towards design of autonomous systems with assurance in presence of perception
uncertainty.
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