
Timing Analysis of Interrupt-Driven Programs
under Context Bounds

Jonathan Kotker Dorsa Sadigh Sanjit A. Seshia
EECS Department, UC Berkeley

jamhoot@eecs.berkeley.edu dsadigh@berkeley.edu sseshia@eecs.berkeley.edu

Abstract— Timing analysis is a key step in the design of depend-
able real-time embedded systems, yet existing analysis tools do
not work well for interrupt-driven code, which is commonly used
in embedded systems. In this paper, we present a technique for
timing analysis of interrupt-driven software. We show that for
systems that use priority pre-emptive scheduling, if there is a
finite arrival time between interrupts, one can use bounds on
the number of context switches to perform timing analysis. Our
work builds upon prior work on timing analysis for sequential
programs. We present empirical evidence to show that we can
accurately predict the execution time along any path of an
interrupt-driven program on a standard micro-controller.

I. INTRODUCTION

Timing is central to the correctness of real-time embedded
systems. Timing properties are determined by the behavior of
both the control software and the platform the software exe-
cutes on. The verification of such properties is made difficult
by their heavy dependence on characteristics of the platform,
including details of the processor and memory hierarchy. Even
so, over the past two decades, there has been steady progress
in the field of timing analysis for purely sequential software
(see [1], [2]). Most of the progress has been on the classic
problem of estimating the worst-case execution time (WCET)
of a terminating software task. Such an estimate can be used as
conservative checks on real-time constraints as well as for use
in scheduling algorithms. While determining a bound on the
WCET has many uses, it is not the only problem of interest.
As tools typically overestimate the WCET, when the WCET
exceeds the timing bound, one cannot be sure whether the
program can really miss its deadline. One would also like
to find a test case demonstrating that the program can miss
its deadline. Recent methods [2] have sought to address this
problem for sequential programs.

In practice, though, embedded software is not purely sequen-
tial. In many real-world applications, the control software com-
prises several tasks that execute concurrently. Programming
with interrupts is an extremely common form of concurrency
that the control software uses to obtain sensor data from its
physical environment. Apart from a main function, the control
software has one or more interrupt-service routines (ISRs). An
ISR is invoked when its corresponding interrupt is raised, e.g.,
when a new sensor sample is available. For such an interrupt-
driven program, there is a need to ensure that the task meets
its deadline evenin the presence of interrupts. However, the
state-of-the-art of timing analysis for interrupt-driven software

is extremely poor. For instance, in NASA’s recent report on
“unintended acceleration” in certain Toyota automobiles [3],
several limitations of state-of-the-art timing analysis tools are
noted, including the lack of support for interrupts.

The reason for this lack of progress on timing analysis
of interrupt-driven software is not hard to guess. It is the
exponential explosion in the number of interleavings of various
software tasks (such as the main function and the ISRs for
various interrupts). This path explosion especially impacts
timing analysis, since timing is a highly path-sensitive property
— the execution time of a basic block of a program can
depend a great deal on the path it lies on. This is in contrast
with verifying invariants (such as assertion violations), where
one is concerned with checking if a particular “error” location
is reachable without regard to how it is reached. Moreover,
interrupts also impact processor operation, e.g., by flushing
the CPU pipeline. Most current state-of-the-art WCET analysis
techniques are based on using abstract interpretation to create
an abstract timing model of the processor [1]. Even for
sequential programs, the creation of an abstract timing model
is an extremely tedious manual process. With interrupt-driven
programs, the process is even harder due to the need to model
the impact of interrupts on hardware and also due to the
severe imprecision abstract interpretation suffers due to the
large number of joins required on reconvergent interleaved
paths.

Even with these challenges, good embedded software design
often follows rules that can ease the problem. First, in many
systems, there is a strict priority assignment between various
tasks in the system, and the task scheduler follows priority
pre-emptive scheduling— a task runs to completion unless
a higher-priority task preempts it. Second, there is usually a
finite lower bound on inter-arrival timebetween interrupts,
dictated, for example, by the rate at which a sensor generates
samples. This inter-arrival time bound imposes a restriction
on how frequently a task can be interrupted. Finally, careful
coding practices involve the use of “atomic sections” by
disabling interrupts in selected parts of the program.

In this paper, we present a novel approach to the problem
of timing analysis of interrupt-driven software that takes
advantage of the above design rules. In particular, we make
the following contributions:

� We show how a lower bound on inter-arrival time of

FMCAD 2011, Page 81

interrupts in turn imposes an upper bound on the number
of “context switches” between the interrupted task and the
ISR. This enables the use of context-boundedanalysis,
similar to the work pioneered by Qadeer et al. [4],
[5]. The use of atomic sections and priority pre-emptive
scheduling further reduces the number of interleavings
that need to be considered.

� Even with these reductions, the number of interleaved
paths can still be exponential in the context bound, and
very large in practice. Obtaining measurements for a large
number of paths can be very tedious and expensive. We
show that we can leverage work for sequential program
timing analysis to mitigate this problem. In particular, we
adopt the idea of using the execution time of basis paths
to predict the times of other program paths [2], [6]. The
number of basis paths is guaranteed to be polynomial in
the size of the program.

� We demonstrate our approach with experiments on a
real embedded platform, the Luminary Micro LM3S8962
board with an ARM Cortex M-3 processor [7], interfaced
to sensors on the iRobot Create mobile robot [8]. We
show that we can accurately predict not only the WCET
of various programs, but also the execution times of
arbitrary program paths. When a particular deadline is
violated, our approach can generate a test case exhibiting
how this occurs.

To our knowledge, our approach is the first timing analysis
technique for interrupt-driven software that can not only gener-
ate worst-case execution time estimates, but also can generate
accurate predictions for the actual timing (not just bounds)
along arbitrary program paths. Importantly, our approach is
extremely portable: in contrast with traditional WCET tech-
niques that rely on tedious manual modeling of the platform,
our approach only requires automated systematic generation
of measurements on the target platform, from which we make
accurate predictions of program timing on paths that have not
been tested.

The rest of the paper is organized as follows. We introduce the
problem, along with basic terminology, definitions, and related
work in Section II. The core of our approach is presented in
Section III. Section IV presents an experimental evaluation.
We conclude in Section V with directions for future work.

II. BACKGROUND AND RELATED WORK

We define terminology and the problems considered in this
paper in Section II-A, and compare with related work in
Section II-B.

A. Problem Definition

Real-time embedded programs are reactive programs that
execute repeatedly within a top-level “while (1) loop”. We
are concerned with the tasks invoked within this loop, which
are required to be terminating programs. For this paper, we
are concerned with programs structured as a single “main”

task along with one or more interrupt-service routines (ISRs)
which are written typically as other tasks (think of C func-
tions). Typically, the boot-up sequence of the system involves
registering the ISRs as handlers for the various interrupts that
the system must respond to.

We present a simple imperative language to model these
interrupt-driven programs. Figure 1 shows the program syntax.
An interrupt-driven program P is composed of N tasks,
each of which is a sequential program. Each task T has an
associated priority level p, which is a positive integer. We will
assume that each task has a unique priority level, and a larger
priority level indicates higher priority. A task of priority pi

can interrupt a task with priority pj if pi > p j . Once a higher-
priority task has interrupted a lower-priority task, it runs to
completion unless it is interrupted by a task with still higher
priority. This scheduling scheme is known as priority pre-
emptive scheduling, and is widely implemented in embedded
platforms.

S ::= v := e | skip | if ethen S1 else S2

| S1; S2 | while edo 〈B 〉S
| atomic {S } | timed while � do S

T ::= 〈S; p〉
P ::= T1 ‖T2 ‖ : : : ‖TN

Fig. 1: Syntax for Interrupt-Driven Programs. v and e
denote an l-value and an expression in any standard imperative programming
language such as C. The skip statement is a no-op. Every while loop has
an associated loop bound B . T denotes a sequential task with an associated
priority p, and P denotes a program composed of n tasks.

The code for a task T follows standard syntax of an imperative
language such as C, with a few small exceptions. Assignments
have the form v := e where v is an l-value and e is any
expression in C including procedure calls. For simplicity, we
disallow recursive procedure calls; in any case, it is highly
desirable in real-time embedded software to impose finite
bounds on recursion depth. The syntax of Fig. 1 includes if
statements as a way of modeling all conditional constructs,
including switch statements. We will use switch statements
where required for brevity. The main exceptions to standard
program notation are with regard to while loops and the
presence of a special atomic program construct, as described
below:

1) Each while loop must have a statically-known upper
bound B on the number of loop iterations. We assume
each loop is annotated with such a bound. We will
use the standard for -loop notation where it is more
convenient to do so.

2) There is a special timed-while loop construct
timed while which has an associated deadline
� . This loop runs for exactly � cycles and terminates
thereafter. This construct models timed loops common
in embedded code that waits for an event for a specific
amount of time, with termination guaranteed by the
expiration of a hardware timer.

FMCAD 2011, Page 82

3) We include a special atomic construct which models
a piece of code S that runs uninterrupted. This con-
struct is typically implemented by disabling interrupts
before running S and re-enabling interrupts after S
completes execution. Using such atomic code sections
within sequential code is considered good programming
practice to ensure that certain operations are completed
atomically irrespective of the presence of interrupts.

We assume that interrupts cannot occur infinitely often during
the execution of P and that there is a finite lower bound
on the inter-arrival times of interrupts. We believe this is
a reasonable assumption that holds in practice for real-time
embedded systems.

Given the above model, we are concerned with answering
the following three types of timing analysis questions. For
each question, the inputs include an interrupt-driven program
P and the platform it executes on. The platform is the
complete hardware and software environment of P , including
the compiler, processor, and memory architecture.

� P1: Threshold Property Checking.
Does P always complete within � cycles? If not, provide
a test case (counterexample).

� P2: Worst-Case Execution Time Prediction.
Predict the worst-case execution time of P and generate
corresponding test case.

� P3: Predicting Timing along All Paths.
Predict the execution time (not a bound) of program P
along all paths, where a path involves following a specific
interleaving of tasks and particular paths within tasks.

One can observe that problem P3 is more general than P1
and P2 in that if one can solve P3, one can answer questions
P1 and P2 as well. Therefore, in Section III, we focus on
addressing problem P3. We demonstrate our results for all
three problems in Section IV.

Our technique relies on the notion of context-bounded analy-
sis [4], [5]. Following the definition introduced by Qadeer and
Rehof [5], a contextis an uninterrupted sequence of actions
by a single task. A bound of K on the number of contexts
implies a bound of K − 1 on the total number of context
switches between tasks.

B. Related Work

As noted above, Qadeer et al. introduced the idea of verifying
multithreaded software by using context bounds [4], [5]. How-
ever, their work focuses on traditional propositional temporal
properties. Our paper is the first to apply the idea of context-
bounded analysis to the problem of timing analysis.

Brylow and Palsberg [9] consider the topic of deadline analy-
sis in interrupt-driven programs — checking whether every
interrupt is serviced before its deadline. They assume that
worst-case execution times are already determined for certain
program fragments and use this in their analysis. In contrast,
we are concerned with predicting execution time properties

of the entire interrupt-driven program, and can generate the
WCET estimates required in their analysis.

The WCET analysis community has mainly focused on analyz-
ing sequential programs without interrupts. A recent industrial
experience report [10] states the difficulty of estimating the
WCET of an interrupt service routine in welding control
software, writing: “It was difficult to detect if other inter-
rupts had disturbed the measurement of the current interrupt.”
While there has been work on testing non-timing “functional”
properties of interrupt-driven software (e.g., [11]), there is
no systematic work for verifying timing properties of such
programs. The work on schedulability analysis— in which
one analyzes if a task can meet its deadline in spite of pre-
emption by other tasks — is related; however, that work
treats tasks as atomic objects (see, e.g., [12]), whereas we
perform a detailed program analysis of tasks, considering
interleaved program paths and interaction of tasks through
shared variables. To the best of our knowledge, our technique
is the first systematic approach for performing WCET analysis
(and other timing analysis) on interrupt-driven programs.

Kidd et al. [13] present an approach to transform a concur-
rent real-time program with priority pre-emptive scheduling
to a sequential program so that any state reachable in the
original concurrent program can be reached by performing
reachability analysis of the sequential program. This is close
to our work in that we could conceivably use their reduction;
however, additional assumptions will be needed on inter-
arrival time of interrupts, as in our paper. Other methods
for more compactly transforming context-bounded concurrent
programs to sequential programs are also available [14], [15];
however, with priority pre-emptive scheduling the benefit of
these transformations is somewhat limited. Our contribution is
to show how the ideas of context-bounding and basis paths can
be combined to perform accurate timing analysis of interrupt-
driven software.

III. APPROACH

Consider an interrupt-driven program P = T0‖T1‖ : : : ‖TN ,
where i denotes the priority level of Ti . We will consider T0 to
be the main function, and all other tasks to be ISRs. Thus, there
are n interrupts, which we denote by �1; �2; : : : ; �n . As part of
the problem description, we are also supplied a lower bound
� on the time between interrupts – the “inter-arrival” time of
interrupts. Finally, the platform of interest is also specified.

The high-level idea of our approach is to reduce the problem of
timing analysis of interrupt-driven programs to timing analysis
of sequential programs, by deriving a context bound that is
adequate to explore all interleaved paths of P . The approach
operates in the following five steps.

1) Use the finite inter-arrival times of interrupts to derive
a context bound CB for P that is adequate to explore
all interleaved paths of P .

2) Use CB to generate a single sequential program Pseq
that is path-equivalent to P for the context bound CB .

FMCAD 2011, Page 83

This harness is specific to each platform, involving the use of a
few inline assembly instructions at each interrupt point (loca-
tion). While this involves a slight modification to the original
code, given the small number of inline assembly instructions,
we believe any skew to program timing is miniscule.

Measurements can be obtained using one of a range of execu-
tion time measurement techniques – again these are platform-
specific. Perhaps the most non-intrusive (but rather expensive)
method is the use of a logic analyzer. Somewhat simpler is the
use of on-chip cycle counters or on-board timers. These are
applicable provided the code fragment is small enough that the
timer register does not overflow. We use the latter approach as
it is applicable for our benchmarks. Any alternative accurate
measurement technique can be used instead. It is important
to note that getting accurate measurements on the embedded
platform can be a time-consuming process, involving repeated
re-compilation and logging of measurements — therefore, it
is desirable to limit the number of measurements taken. (We
will see in the next section how the notion of basis paths helps
us to limit the number of measurements taken, while retaining
prediction accuracy.) Further platform-specific details about
measurement are given in Section IV-B.

Once the measurements are obtained for the basis paths,
we invoke GAMETIME’s learning algorithm (as described in
Section III-A) to provide answers to the problem of interest
(P1, P2, or P3).

E. Efficiency Analysis

In this section, we calculate the number of basis paths that
GAMETIME requires to perform its timing analysis and com-
pare it to the total number of paths that are possible through
a sequential program, to demonstrate the efficiency of the
GAMETIME approach.

We assume that the control-flow graph of a task Ti

(1 ≤ i ≤ j) has mi edges, ni nodes, and pi possible
interrupt points, with a context bound of CB . Let m =
maxi mi and p = max i pi . Since, in the worst case, the
number of interrupt points can exceed the number of basic
blocks, mi = O(pi) and m = O(p). For ease of analysis, we
first consider a specific task Ti that can only be interrupted
by exactly one higher priority task Tj ; j > i . To generate the
sequential task T0

i corresponding to task Ti , we make copies
of the control-flow graph of Tj and attach a copy to each
interrupt point in task Ti . The control-flow graph of T0

i thus has
O(mi + pi ·CB ·mj) edges, which is O(p2 ·CB). As described
earlier and in [2], the number of basis paths is linear in the
number of edges, and so GAMETIME will infer O(p2 · CB)
basis paths. In contrast, since there are pi possible interrupt
points, and each interrupt point can be taken at least once and
at most CB times, we have at least one unique program path
through Ti for every choice of CB out of pi · CB interrupt
points. Thus, there are O((pCB)CB) total paths through the
control-flow graph of Ti . This simple case of two tasks is
representative of the difference between the total number of

paths through the control-flow graph of a sequentialized task
and the number of basis paths that GAMETIME requires.

We can generalize this to the case of multiple tasks: consider a
specific task Ti that can be interrupted by any higher priority
task Tr ; (i < r ≤ j). We can generate the sequential task
T0

i corresponding to task Ti as follows: We do not need to
sequentialize Tj since it is the highest priority thread and thus
cannot be pre-empted by any other thread. Thus, the sequential
task T0

j is the same as Tj . We sequentialize the task Tj � 1 as
described in the case of two tasks to create a control-flow
graph with O(mj � 1 + pj � 1 · CB · mj) edges. We can then
sequentialize the task Tj � 2 by noticing that either T0

j � 1 or
T0

j can interrupt at each interrupt point of Tj � 2. The task
T0

j � 2 thus has O(pj � 2 · CB · (mj � 1 + pj � 1 · CB · mj)) =
O(pj � 2 ·CB ·mj � 1+ pj � 2 ·pj � 1 ·CB 2 ·mj) edges. Proceeding
inductively, we see that the size of the control-flow graph of
the sequential task T0

i is O(
Pj � 1

r =i (
Qr

`=i p` CB)mr +1)) edges.
However, not all the paths through this CFG are feasible, due
to the context bound. In fact, to determine the number of basis
paths, notice that with a context bound of CB , the effective
product

Qr
`=i p` CB , after eliminating paths with more than

CB context switches, has at most CB terms. Thus, the number
of basis paths grows as O((pCB)CB m). Note that this is
polynomial in the size of the tasks and is independent of the
number of tasks. Using more compact transformations to a
sequential program (e.g., [14], [15]) it might be possible to
further reduce this bound.

To determine the total number of paths through the sequential
task T0

i , we recognize that any of the pi ·CB interrupt points
can be the location of one of the (at most) CB context
switches. An interleaving through k tasks is a combination
of CB out of (p · CB)k choices of combinations of interrupt
points. Thus, the total number of paths grows as O((p ·
CB)(k �CB)). Note that this grows exponentially in the number
of tasks.

IV. EXPERIMENTAL RESULTS

The goal of the experiments reported here is to demonstrate
that our approach can, by measuring only a small linear
subset of interleaved paths, accurately predict (i) the worst-
case execution time for interrupt-driven programs (which we
check by exhaustively enumerating all program paths), and (ii)
the execution time along any arbitrary program path.

A. Physical Apparatus and Benchmarks

We used the Luminary Micro LM3S8962 board [7], interfaced
to the iRobot Create autonomous robot platform [8] for our
experiments. This microcontroller is shown in Figure 5(a) and
the iRobot Create in Figure 5(b). The Luminary Micro board
contains a 32-bit ARM Cortex M3 microcontroller, running
at 50 MHhz. This microcontroller is interfaced to a range
of peripherals: of special interest for our experiments is the
UART interface to built-in iRobot sensors and the analog-to-
digital interface to an ADXL-322 accelerometer. The built-in

FMCAD 2011, Page 87

