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Abstract Roles such as leading and following can emerge

naturally in human groups. However, in human-robot

teams, such roles are often predefined due to the diffi-

culty of scalably learning and adapting to them. In this

work, we enable a robot to efficiently learn how group

dynamics emerge and evolve in human teams and we

leverage this understanding to plan for influencing ac-

tions for autonomous robots that guide the team toward

achieving a common goal. We first develop an effective

and concise representation of group dynamics, such as

leading and following, by enforcing a graph structure

while learning the weights of the edges corresponding

to one-to-one relationships between the agents. We then

develop an optimization-based robot policy that lever-

ages this graph representation to attain an objective

by influencing a human team. We apply our framework

to two types of group dynamics, leading-following and

predator-prey, and show that our structured represen-

tation is scalable with different human team sizes and

also generalizable across different tasks. We also show

that robots that utilize this representation are able to

successfully influence a group to achieve various goals

compared to robots that do not have access to these

graph representations. 1

Keywords human-robot teaming · human modeling ·
multiagent systems

1 Introduction

Humans are capable of seamlessly interacting and col-

laborating with each other. They can easily form teams
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and decide if they should follow or lead to efficiently

complete a task as a group. This is apparent in sports

teams, human driving behavior, or simply having two

people move a table together. Similarly, humans and

robots are expected to seamlessly interact with each

other to achieve collaborative tasks. Examples include

collaborative manufacturing, search and rescue missions,

and in an implicit way, collaborating on roads shared

by autonomous and human-driven cars.

In these collaborative teamwork scenarios, an im-

portant challenge for robots is to understand and in-

teract with human agents seamlessly and even further

influence a human team to achieve a desired goal. For

instance, imagine a mixed human-robot search and res-

cue mission with no direct communication capabilities

similar to Fig. 1. When a quadcopter senses valuable in-

formation from the environment how should the quad-
copter direct the rest of its human teammates toward

the desired goal?

One common solution is to assign leading and fol-

lowing roles to the team a priori before starting the

search and rescue mission. Many current human-robot

interactions determine leader-follower roles beforehand

[29, 44, 55, 80, 84, 33, 72]. This include tasks that

require learning from demonstrations or preferences,

where the human is considered as the leader and the

robot is the follower [19, 3, 1, 87, 23, 62, 13, 68], or as-

sistive tasks where the robot teaches or assists human

users [70, 41, 57, 39, 51]. However, assigning leader-

ship roles a priori is not always feasible in dynamically

changing environments or long-term interactions.

There has also been significant prior work on how

we can construct intelligent robot policies that induce

desired behaviors from people [76, 35, 63, 64, 12, 85, 56].

However, all of these works optimize for robot policies

that influence only a single human in one-on-one inter-

actions. These works are able to successfully produce
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Fig. 1: A search and rescue example, where a team of

humans intend to rescue people from two islands shown

in green. The quadcopter collects more information and

determines that the team should head towards the is-

land on the right. It guides the human team toward

the island on the right using a graph representation

that models the human team. We estimate leading and

following relationships in human teams (denoted by the

arrows), and use this to create influential robot policies.

The black arrows represent intended human leading and

following behaviors whereas the grey arrows represent

updated leading and following behaviors after the in-

fluencing robot action.

influencing behaviors by keeping an estimate of the hu-

man’s state and optimize for actions based on the esti-

mation, which is often computationally intractable with

larger groups of humans.

Instead of keeping track of each individual’s state in

a team, we propose a more scalable method that esti-

mates the collective team’s state. Similar to individuals,

teams exhibit behavioral patterns and structures that

robots can use to create intelligent influencing policies.

One particular feature of human teams we will focus on

in this work is leading and following relationships.

Our key insight is that there exists an underly-

ing graphical structure encoding the larger and

more complex interactions between humans in

team settings.

In this paper, we develop a scalable approach to

extract meaningful latent structures in teams of hu-

mans that represent their leading and following behav-

iors. We extract an underlying graph, leader-follower

graph (LFG), to represent the global pattern of leader-

follower dynamics using information from local, pair-

wise leader-follower interactions that we learn using su-

pervised learning techniques. This structure provides a

concise and informative representation of the current

state of the team and can be used in planning. We

then develop novel strategies for robots who join the

human team to efficiently estimate the leader-follower

graph and further influence this structure to more effi-

ciently achieve the team’s goals. For instance, as shown

in Fig. 1, there is an underlying team structure between

the humans who are collaboratively navigating towards

the left goal. However, a robot capable of estimating

this underlying structure through the leader-follower

graph can follow strategies that collectively influence

the team to instead navigate the team towards the right

goal, which could lead to a more desirable outcome.

We demonstrate the generalizability of our approach

by applying our framework to a second type of group

dynamics: predator-prey relationships. We show that

we are able to successfully model predator-prey rela-

tionships using leader-follower graphs (LFGs). We also

demonstrate that a robot using this LFG model is able

to influence predator-prey dynamics.

Our contributions in this paper are as follows:

– Formalizing and learning a graphical structure that

captures complex relationships between members in

human teams.

– Developing optimization-based robot strategies that

leverage the graph representation to influence the

team towards a more efficient objective.

– Providing simulation experiments in a pursuit-evasion

game demonstrating the robot’s influencing strate-

gies to reverse a leader-follower relationship, dis-

tract a team, and lead a team towards an optimal

goal based on its learned leader-follower graph.

– Generalizing our framework to a predator-prey do-

main and showing that our framework can still suc-

cessfully model group dynamics, scalably deal with

different group sizes, and can be used to design in-

fluencing policies.

In the rest of this paper, we first discuss relevant work

on modeling teams, influencing teams, and ad hoc team-

work in Section 2. We then describe our formalism and

algorithm for learning graphical representations of hu-

man teams in the leader-follower domain (Sections 3-5)

followed by the predator-prey domain(Sections 6-8). Fi-

nally, we describe our experiments in the leader-follower

domain (Section 9) and the predator-prey domain (Sec-

tion 10) followed by a discussion of limitations and fu-

ture works.
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2 Related Work

2.1 Modeling Teams

Finding computationally e�cient ways to model human
teams is an important part of this work. These models
can be used to design intelligent policies that allow an
agent to inuence or coordinate with the team. We re-
view ways in which prior works have modeled groups of
agents.

Flocks and Swarms. Many works model ocks and
swarms inspired by animal ocking behavior [32, 22, 71,
81]. These models describe how groups reach consensus
in orientation when navigating a space. They generally
assume that all agents are homogenous and that they
follow the same, relatively simple, update rule. Impor-
tant components of this update rule include aligning
orientation with their neighbors, positional attraction
and repulsion towards neighbors, and some noise [32].
For example, Cristiani and Piccoli are able to replicate
many self-organized patterns found in nature by model-
ing long-range cohesion, short-range repulsion, and the
agents' visual �elds [22]. Rosenthal et al. show that all
agents are not equally susceptible to being inuenced.
They show that individuals with relatively few strongly
connected neighbors are both more socially inuential
and susceptible to being inuenced [71]. While these
models are computationally e�cient, they are too sim-
plistic to be able to capture social dynamics that occur
in human teams.

Attention and Graph Neural Networks. Recently,
graph neural networks that use attention have become
popular for modeling agent interactions [36, 52, 37,
40]. Attention is generally used to learn edge weights
between agents. Vertex Attention Interaction Network
(VAIN) uses attention to capture local structure by
allowing the network to determine which agents will
share information [36]. Li et al. uses self-attention to
�nd structure in a coordination graph and then uses
graph neural networks to integrate information among
all agents [52]. Jiang et al. uses multi-head dot product
attention to extract relations among neighboring agents
in order to increase agents' receptive �elds. Latent fea-
tures are then extracted from these enlarged receptive
�elds to learn cooperative policies [40]. Compared to
our approach, attention-based methods generally have
more parameters and thus require more data to train.
However, using attention-based methods to model hu-
man teams could be promising future work.

Modeling Humans. While there are many works that
model multiagent systems, the extent to which these
models can generalize to groups of humans remains un-
derexplored. Many works in cognitive science, psychol-

ogy, and behavioral economics have created predictive
models of humans by modeling their biases and sub-
optimalities. For instance, Ordonez and Benson III in-
vestigated how humans make decisions under time con-
straints [66]. Simon developed the concept of bounded
rationality to reect limited humans' limited cognitive
resources [77]. Tversky and Kahneman developed Cu-
mulative Prospect Theory to capture human-decision
making under risk and uncertainty [83]. In robotics,
being able to successfully predict human behavior has
shown to improve performance on tasks such as assistive
robotics [51, 57, 39, 25], autonomous driving [74, 75,
6], collaborative games [61], and motion planning [88,
59]. The noisy rational choice model has been an ex-
tremely popular choice due to its simplicity [14, 13, 11,
27, 7]. Other models include the adoption of Cumula-
tive Prospect Theory for human-robot interaction [48],
models of human driving [34, 53], as well as learning-
based models [60, 67].

In addition to explicitly modeling human behav-
ior, robots have also been able to infer human pref-
erences through interactions using partially observable
Markov decision processes (POMDPs) which allow rea-
soning over uncertainty on the humans' internal state
or intent [17, 24, 50, 58, 38, 75]. Human's intent in-
ference has also been achieved through human-robot
cross-training [62] as well as various other approxima-
tions to POMDP solutions such as augmented MDPs,
belief space planning, approximating reachable belief
space, and decentralization [2, 45, 46, 65, 69, 73]. How-
ever, these methods usually focus on modeling a single
human agent and do not capture social dynamics that
occur among humans.

2.2 Inuencing Teams

Given a model of a team, an important next question
is how a more informed agent can use this model to
coordinate with or inuence the team.

Flocks and Swarms. Literature on inuencing ocks
and swarms looks at how informed agents can guide the
group towards a preferred direction. This is similar to
some of our evaluation tasks where the robot agent at-
tempts to guide the human team towards a particular
goal. The homogeneity and simple nature of agents in
ocks and swarms allow for leader agents to implicitly
inuence the group. More speci�cally, implicit leader-
ship algorithms allow a group of agents to reach con-
sensus where each agent can observe their neighbors'
states within a particular radius. As agents attempt to
align their orientation with their neighbors', this em-
powers informed agents to lead [86, 31]. Prior work has
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also examined properties that make a swarm more sus-
ceptible to inuence. Couzin et al. show that in groups
of animals, only a small proportion of informed agents
are required, and the larger the group, a smaller the
proportion of informed individuals are needed [21]. Ce-
likkanat et al. study the extent to which informed in-
dividuals can lead a ock by varying three factors: (1)
the weight of the direction of preference (2) the ratio
of informed individuals and (3) the size of the ock.
They �nd that a ock is easier to control when mod-
erate weight is put on the direction of preference (2)
larger ock sizes and (3) more agents attempt to align
their states with neighboring agents' states [18]. It is
di�cult to apply these �ndings to human teams due to
the simplicity of ock and swarm models.

Human-Swarm Interaction. There has also been con-
siderable work on how humans can inuence ocks and
swarms. Tiwari et al. consider the problem of leader
placement when steering a large robot swarm [82]. Robots
can either be controlled by a human or behave ac-
cording to a swarm model. The authors consider which
robots are positionally best equipped to inuence the
swarm (front, middle, or periphery). Kerman et al. and
Brown et al. also consider how humans can inuence
swarms by controlling a subset of them [43, 16]. They
show that humans are able to lead the swarm to switch
from torus to ock formations and vice versa. Our work
tackles the reverse problem where a robot agent must
inuence a team of humans.

2.3 Ad Hoc Teaming

An autonomous ad hoc agent must both model and
inuence a team that it has never seen before [79].
The ad hoc setting is similar to ours in that we ex-
pect our robot agent to inuence a human team that
it has never worked with before. Ad hoc teaming has
been studied in the multi-armed bandit setting where a
teacher needs to trade o� between teaching a new learn-
ing agent and exploitation [78, 10]. Role assignment in
ad hoc teams have also been studied [15, 30]. Typi-
cally, an ad hoc agent needs to select a role such that it
maximizes the team's utility. For instance, in Bowling
and McCracken's work, teammates assign a role to the
agent and the agent's job is to infer its role by simulat-
ing plays and selecting the one that is most similar to
current teammate behavior [15]. Liemhetcharat models
how well agents work together in ad hoc teams using a
graph; nodes represent agents, their value represent the
agent's capabilities, and agent synergy is determined
by their capabilities and how far apart they are located
from other agents in the graph [54]. Liemhetcharat de-

scribes how to learn this graph based on observations
of team performance and then use this model to plan
for creating e�ective ad hoc teams. Barrett et al. intro-
duce model-based and model-free algorithms that al-
lows ad hoc agents to collaborate with a variety of dif-
ferent teammates [9]. The algorithms either learn mod-
els about prior teammates or policies on how to collab-
orate with prior teammates, and uses this knowledge
to interact with current teammates. Albrecht assumes
that agents can be characterized into a set of policies
drawn from some unknown distribution [4]. The author
uses a Bayesian approach where agents update their
posterior beliefs about types of other agents which can
then be used for planning. While many of these ad hoc
teaming works focus on modeling di�erent types of po-
tential teammates, in this work, we focus on modeling
a speci�c type of latent group dynamics | leading and
following graphs | in order to enable a robot to inter-
act with an unknown team.

3 Formalism for Modeling Leading and
Following in Human Teams

Running Example: Pursuit-Evasion Game. We
de�ne a multi-player pursuit-evasion game on a 2D plane
as our main running example. In this game, each pur-
suer is an agent in the set of agentsI that can take
actions in the 2D space to navigate. There are a num-
ber of stationary evaders, which we refer to asgoals.
The objective of the pursuers is to collaboratively cap-
ture the evaders (goals). Fig. 2 shows an example of a
game with three pursuers, shown in orange, and three
goals, shown in green. The action space of each agent is
identical, A i = f move up, move down, move left, move
right, stay still g; the action spaces of all agents collec-
tively de�ne the joint action space A. All pursuers must
jointly and implicitly agree on a goal to target, and a
goal will be captured when all pursuers collide with it
as shown in Fig. 2 (b).

Leaders and Followers. We de�ne a set of goalsg 2
G, which abstracts the idea of the agents reaching a
set of states in order to fully optimize the joint reward
function. For instance, in a pursuit-evasion game, the
goals informally correspond to the evaders that need to
be captured by all the pursuers, i.e., all the agents (pur-
suers) need to reach a state corresponding to the goals
(evaders) being captured. A goal inG intuitively signi-
�es a way for the agents to coordinate strategies with
each other. For instance, in a pursuit-evasion game, the
agents should collaboratively plan on actions that cap-
ture the goals. To put this in the context of leading and
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Fig. 2: Pursuit-evasion game. (Left) we demonstrate a
pursuit-evasion game with three goals (green circles),
and three pursuers (orange circles). The pursuers must
jointly agree on moving toward a target. (Right) The
three pursuers move tog1 to capture it.

following, when agents capture a goal,the goal can be
thought of as being followed.

Each agent i 2 I follows a goal or another agent,
which we refer to as aleader. Formally we let l i 2 G[ I ,
where l i is either an agent or a �xed goal g who is the
leader of agenti (agent i follows l i ). This is shown in
Fig. 3 (a), where agent 2 follows goalg1 (l2 = g1) and
agent 3 follows agent 2 (l3 = 2).

Leader-Follower Graph. The set of leaders and fol-
lowers form a directedleader-follower graphas shown in
Fig. 3 (a). Each node represents an agenti 2 I or goal
g 2 G. The directed edges represent leading-following
relationships, where there is an outgoing edge from a
follower to its leader. The weights on the edges repre-
sent a leadership score, which is the probability that
the tail node is the head node's leader. For instance,
in Fig. 3 (a), w3;2 represents the probability that 2 is
3's leader. The leader-follower graph is dynamic in that
agents can decide to change their leaders at any time.
We assume that there could be an implicit transitivity
in a leader-follower graph, i.e., if an agenti follows an
agent j , implicitly it could be following the agent j 's
believed ultimate goal.

Some patterns are not desirable in a leader-follower
graph. For instance, an agent would never follow it-
self, and we do not expect to observe cycling leading-
following behaviors (Fig. 3 b). Other patterns that are
likely include: chain patterns (Fig. 3 c) or patterns
with multiple teams where multiple agents directly fol-
low goals (Fig. 3 d). We describe how to construct a
leader-follower graph that is scalable with the number
of agents and avoids the undesirable patterns in Sec.
4.

Partial Observability. The leader of each agent,l i , is
a latent variable. We assume that agents cannot directly
observe the leading and following dynamics of other
agents. Thus, constructing leader-follower graphs can

help robot teammates predict who will follow whom,
allowing them to strategically inuence teammates to
adapt roles. We assume agents have full information
on the observations of themselves and all other agents.
(e.g. positions and velocities of agents).

4 Construction of a Leader-Follower Graph

In this section, we focus on constructing the leader-
follower graph that emerges in collaborative teams. We
will �rst focus on learning pairwise relationships be-
tween agents using a supervised learning approach. We
then generalize our dyadic scoring to multi-player set-
tings using graph theoretic algorithms. This combina-
tion of data-driven and graph-theoretic approaches al-
lows the leader-follower graph to e�ciently scale up
with the number of agents. Our aim is to leverage this
leader-follower graph to enable robot teammates to pro-
duce helpful leading behaviors.

4.1 Pairwise Leadership Scores

We �rst focus on learning the probability of any agent
i following any goal or agent j 2 G [ I . The pairwise
probabilities help us estimate the leadership scorewi;j ,
i.e., the weight of the edge (i; j ) in the leader-follower
graph.

We develop a general framework of estimating the
leadership scores using a supervised learning approach.
Consider a two-player setting whereI = f i; j g, we col-
lect labeled data where agenti is asked to followj , and
agent j is asked to optimize for the joint reward func-
tion assuming it is leading i , i.e., following a �xed goal
g in the pursuit-evasion game (l i = j and l j = g). We
then train a LSTM network with a softmax layer to
predict each agent's most likely leader.

Data Collection. We collect labeled human data by
asking participants to play a pursuit evasion game. We
recruited pairs of humans and randomly assigned lead-
ers l i to them (i.e., another agent or a goal). Partici-
pants played the game in a web browser using their ar-
row keys and were asked to move toward their assigned
leader, l i . In order to create a balanced dataset, we col-
lected data from all possible con�gurations of leaders
and followers in a two-player setting (the con�gurations
are shown in Fig. 7). We collected a total of 186 games.

Since human data is often noisy and di�cult to col-
lect in large amounts; we further augmented our dataset
with synthetic data, where we had simulated humans
play the game. We simulated humans based on a po-
tential �eld path planner [8]. Agents at location q plan
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Fig. 3: (a) Leader-follower graph. Green islands are the goals that need to be captured. Orange circles are the
pursuers. (b) Cyclic leader-follower graph. We design policies that avoid such cyclic behaviors. (c) Chain behavior
in the leader-follower graph. (d) Multiple teams.

their path under the inuence of an arti�cial poten-
tial �eld U(q), which is constructed to reect the en-
vironment. Agents moved toward their leaders by fol-
lowing an attractive potential �eld. Other agents and
goals that are not their leaders are treated as obstacles
that emit a repulsive potential �eld. In our game set-
ting, the position of agent's assigned leaderl i is given
an attractive potential �eld. The rest of the goals and
agents are expressed as repulsive potentials.

Potential Field for Simulated Human Planning.
We denote the set of attractions asA , and the set of
repulsive obstacles asR. The overall potential �eld is
a weighted sum of potential �elds from all attractive
and repulsive obstacles.� i is the weight for attractive
potential �eld from i 2 A , and � j is the weight for
repulsive potential �eld from j 2 R .

U(q) =
X

i 2A

� i U i
att (q) +

X

j 2R

� j U j
rep (q) (1)

The optimal action a that an agent would take lies in
the direction of the potential �eld gradient.

a = �r U(q) = �
X

i 2 A

� i r U i
att (q) �

X

j 2 R

� j r U j
rep (q)

In our implementation, the attractive potential �eld
increases as the distance to goal becomes larger to help
the agent reach the goal. On the other hand, the repul-
sive potential �eld has a �xed e�ective range, within
which the potential �eld increases as the distance to the
obstacle decreases. The attractive and repulsive poten-
tial �elds are constructed in the same way for all attrac-
tive and repulsive obstacles. Speci�cally, the attractive
potential �eld of attraction i , denoted asU i

att (q), is con-
structed as the square of the Euclidean distance� i (q)
between agent at locationq and attraction i at location
qi . In this way, the attraction increases as the distance
to goal becomes larger.� is the hyper-parameter for con-
trolling how strong the attraction is and has consistent

value for all attractions.

� i (q) = kq � qi k

U i
att (q) = 1

2 �� i (q)2

�r U i
att (q) = � �� i (q)( r � i (q))

The repulsive potential �eld U j
rep (q) is used for obsta-

cle avoidance. It usually has a limited e�ective radius
since we do not want the obstacle to a�ect agents' plan-
ning if they are far way from each other. Our choice
for U j

rep (q) has a limited range  0, where the value is
zero outside the range. Within distance 0, the repul-
sive potential �eld increases as the agent approaches
the obstacle. Thus, to compute the repulsive potential
�eld to obstacle j at location q, we �rst identify the
minimum distance  j (q) between q and the obstaclej
as in Eq.(2). Coe�cient � and range  0 are the hyper-
parameters for controlling how conservative we want
our collision avoidance to be and is consistent for all
obstacles. Larger values of� and  0 mean that we are
more conservative with collision avoidance and want the
agent to keep a larger distance to obstacles.

 j (q) = min
q02obsj

kq � q0k

U j
rep (q) =

(
1
2 � ( 1

 j (q) � 1
 0

)2  j (q) <  0

0  j (q) >  0

r U j
rep (q) =

(
� ( 1

 j (q) � 1
 0

)( 1
 j (q)2 )r  (q)  (q) j <  0

0  j (q) >  0

(2)

In our experiments, we �nd that our simulations are
good approximations of human behavior. The simple
nature of the task given to humans (i.e., move directly
toward your assigned leaderl i ) is easily replicated in
simulation.

Training with a Scalable Network Architecture.
Our network architecture consists of two LSTM sub-
modules, one to predict player-player leader-follower
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Fig. 4: Scalable neural network architecture. This example predicts the probability of another agentj being agent
2's leader,w2;j . There are three LSTM submodules used because there are two possible evaders and one possible
agent that could be agent 2's leader. This architecture demonstrates how one can select P-P and P-E modules and
discover the leader-follower relationships in a more scalable and compositional manner.

relationships (P-P LSTM) and one to predict player-
evader relationships (P-E LSTM). We use a softmax
output layer with a cross-entropy loss function to get
a probability distribution over j and all goalsg 2 G of
being i 's leader. We take the leader (an agent or a goal)
with the highest probability and assign this as the lead-
ership score. The P-P and P-E submodules allow us to
scale training to a game of any number of players and
evaders as we can add or remove P-P and P-E submod-
ules depending on the number of players and evaders in
a game. An example of our scalable network architec-
ture is illustrated in Fig. 4.

Evaluating Pairwise Scores. Our network trained
on two-player simulated data successfully captured the
pairwise leading-following relationship (training accu-
racy: 80%, validation accuracy: 83%). We also experi-
mented with training with three-player simulated data
as well as a combination of two-player simulated and
human data (two-player mixed data) resulting in (train-
ing accuracy: 97%, validation accuracy: 75%).

Validation results are shown in Fig. 5. Our model
trained with mixed two-player data was �rst trained on
simulated data and then trained on human data. For
this reason, we have represented the mixed-data model
as a horizontal line in Fig. 5 demonstrating the �nal
validation accuracy.

4.2 Maximum Likelihood Leader-Follower Graph

To build a leader-follower graph in settings with more
than two players, we compute pairwise weightswi;j of
leader-follower relationships between all possible pairs

Fig. 5: Validation accuracy when calculating pairwise
leadership scores trained on simulated, human, and
mixed data (simulated & human), described in Sec.
4.1

of leadersi and followersj . The pairwise weights (lead-
ership scores) can be computed based on the supervised
learning approach described above, indicating the prob-
ability of one agent or goal being another agents' leader.
After computing wi;j for all combinations of leaders and
followers, we can create a directed graphG = ( V; E)
whereV = I [ G and E = f (i; j )ji 2 I; j 2 I [ G; i 6= j g,
and the weights on each edge (i; j ) correspond to wi;j .
In addition, we add a special root node, where all the
goals g 2 G have an outgoing edge to the root node.
This produces a fully connected graph with each edge
corresponding to the probability of one agent leading
another, as shown in Fig. 6 (a).

Our model builds the graph based on the the pair-
wise scores, and thus can generalize to groups with dif-
ferent sizes. The computation increases quadratically
with the size of the graph along with the number of
pairs.
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